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In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming
that a quantum computer could be constructed, it would in practice be required to function with noisy devices called ‘gates’. These
gates cause decoherence of the fragile quantum states that are central to the computer’s operation. The goal of so-called ‘fault-
tolerant quantum computing’ is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we
report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is
possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource
overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources
comparable to the digital resources available in today’s computers, we show that non-trivial quantum computations at EPGs of as
high as one per cent could be implemented.

Research in quantum computing is motivated by the great increase
in computational power offered by quantum computers1–3. There is
a large and still-growing number of experimental efforts whose
ultimate goal is to demonstrate scalable quantum computing.
Scalable quantum computing requires that arbitrarily large com-
putations can be implemented efficiently with little error in the
output. Criteria that need to be satisfied by devices used for scalable
quantum computing have been specified4. An important one is that
the level of noise affecting the physical gates and memory is
sufficiently low. The type of noise affecting a given implementation
is the ‘error model’. A scheme for scalable quantum computing in
the presence of noise is a ‘fault-tolerant architecture’. In view of the
low-noise criterion, studies of scalable quantum computing involve
constructing fault-tolerant architectures and providing answers to
questions such as the following: is scalable quantum computing
possible for error model E? Can fault-tolerant architecture A be
used for scalable quantum computing with error model E? What
resources are required to implement quantum computation C using
fault-tolerant architecture A with error model E?

To obtain broadly applicable results, fault-tolerant architectures
are constructed for generic error models. Here, the error model is
parametrized by an error probability per gate (or simply error per
gate, EPG), where the errors are unbiased and independent. The
fundamental theorem of scalable quantum computing is the
threshold theorem and answers the first question as follows: if
the EPG is smaller than a threshold, then scalable quantum
computing is possible5–8. Thresholds depend on additional assump-
tions for the error model and device capabilities. Estimated
thresholds vary from below 1026 (refs 5–8) to 3 £ 1023 (ref. 9),
with 1024 (ref. 10) often quoted as the EPG to be achieved in
experimental quantum computing.

In the few cases where experiments with two quantum bits
(qubits) have been performed, the EPGs currently achieved are
much higher, 3 £ 1022 or more in ion traps11,12 and liquid-state
nuclear magnetic resonance13,14. For quantum computing to
become practical, it is essential to reduce the large gap between
the experimentally achieved EPGs and those required by theory. The
first goal of our work is to provide evidence that scalable quantum
computing is possible at EPGs above 3 £ 1022. This is encouraging,
but the fault-tolerant architecture that achieves this is impractical
because of its large resource requirements. To reduce the resource
requirements, lower EPGs are required. The second goal of our work
is to give a simple fault-tolerant architecture (called the ‘C4/C6

architecture’) well-suited to efficient computing with EPGs between
1024 and 1022. The third goal is to provide a means of estimating its
resource requirements depending on computation size and EPG.

Fault-tolerant architectures realize low-error qubits and gates by
encoding them with error-correcting codes. A standard technique
for reducing errors is concatenation. Suppose we have a scheme
that, starting with qubits and gates at one EPG, produces encoded
qubits and gates that have a lower EPG. If the error model for
encoded gates is sufficiently well-behaved, we can apply the same
scheme to the encoded qubits and gates to obtain a next level of
encoded qubits and gates with much lower EPGs. This process
yields a hierarchy of repeatedly encoded qubits and gates, where the
physical qubits and gates are at level 0. The top level is used for
quantum computing. Its qubits, gates, EPGs and so on are ‘logical’.

The C4/C6 architecture differs from previous ones by combining
a number of independently useful techniques. First, we use the
simplest error-detecting codes, thus avoiding the complexity of even
the smallest error-correcting codes. Error correction is added
naturally by concatenation. Second, error correction is performed
in one step and combined with logical gates by means of error-
correcting teleportation. This minimizes the number of gates
contributing to errors before they are corrected. Third, the archi-
tecture bootstraps key gates by state preparation and purification,
thus enabling us to define it using a minimal and incomplete set of
operations with only one unitary gate. Fourth, verification of
the needed ancillary states (logical Bell pairs) largely avoids the
traditional syndrome-based schemes. Instead, we use hierarchical
teleportations and partial decoding. Finally, the highest thresholds
are obtained by introducing the model of postselected computing
with its own thresholds, which may be higher than those for
standard quantum computing. Our fault-tolerant implementation
of postselected computing has the property that it can be used to
prepare states that are sufficient for standard scalable quantum
computing.

Error model and assumptions
The unit of quantum information is the qubit, a quantum two-level
system whose states are superpositions aj0l þ bj1l (ref. 15). Qubits
are acted on by the Pauli operators X ¼ jx (bit flip), Z ¼ j z (sign
flip) and Y ¼ j y ¼ ijxj z. The identity operator is I. One-qubit
gates include preparation of j0l and jþl¼ ðj0lþ j1lÞ=

ffiffiffi

2
p

;
Z-measurement (distinguishing between j0l and j1l), X-measure-
ment (distinguishing between jþl and j2l¼ ðj0l2 j1lÞ=

ffiffiffi

2
p

Þ; and
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the Hadamard gate ðHAD;aj0lþ bj1l 7! ajþlþ bj2lÞ: We use one
unitary two-qubit gate, the controlled-NOT (CNOT), which
maps j00l 7! j00l, j01l 7! j01l, j10l 7! j11l and j11l 7! j10l. This
set of gates is a subset of the so-called Clifford gates, which are
insufficient for universal quantum computing10. Our minimal gate
set Gmin consists of j0l and jþl preparation, Z- and X-measurement
and CNOT. Universality may be achieved with the addition of
other one-qubit preparations or measurements, as explained
below. The physical gates mentioned are treated as being
implemented in one ‘step’; the actual implementations may be
more complex.

All error models can be described by inserting errors acting as
quantum operations (not necessarily unitary) after gates or before
measurements. We assume that a gate’s error consists of random,
independent applications of products of Pauli operators with
probabilities determined by the gate. It is at present too difficult
to obtain a threshold that does not depend on the details of the
probability distributions, so we assume unbiased, ‘depolarizing’
errors for each gate: j0l (jþl) state preparation erroneously pro-
duces j1l (j2l) with probability ep. A binary (such as Z or X)
measurement results in the wrong outcome with probability em.
CNOT is followed by one of the 15 possible non-identity Pauli
products acting on its qubits with probability e c/15 each. HAD is
modified by one of the Pauli operators, each with probability eh/3. We
further simplify by setting ec ¼ g, eh ¼ 4g/5 and em ¼ ep ¼ 4g/15.
This choice is justified as follows: 4g/5 is the one-qubit marginal
probability of error for the CNOT, which we expect to be an upper
bound for all one-qubit gate errors. As for preparation errors, if they
are much larger than 4g/15, then it is possible to purify prepared
states using a CNOT. For example, we can prepare j0l twice, apply a
CNOT from the first to the second and measure Z of the second. We
then try again if the measurement outcome indicates j1l, and
otherwise use the first state. The probability of error is given by
4g/15 þ O(g 2), assuming that CNOT error is as above and
measurement and preparation errors are proportional to g. To
improve Z measurement, we can introduce an ancilla in j0l, apply a
CNOT from the qubit to be measured to the ancilla, and
measure both qubits. If the measurements disagree, an error is
detected. If not, the conditional measurement error probability is
4g/15 þ O(g2). Detected errors are readily managed16.

To account for ‘memory’ errors, we assume that gates other than
measurements take the same amount of time. Thus, the error
parameters represent the total error, including any delays for faster
gates to equalize gate times. For the C4/C6 architecture, memory is

required when waiting for measurement outcomes that determine
whether prepared states are good, or that are needed after tele-
portation, particularly when implementing non-Clifford gates17,18.
The simplest way to account for memory errors in these situations is
to distribute it equally to the surrounding gates. The maximum
error thus distributed is the memory error eB accumulated during
the time required for a Bell measurement, here consisting of a
CNOT followed byX andZmeasurements. No gate is both preceded
and followed by memory delays, so gate errors are adjusted by at
most eB/2, which we assume is already taken into account in the
errors given in the previous paragraph. To ensure that eB is
sufficiently small requires measurements that are fast compared to
memory decoherence times. Systems such as those based on ion
traps can achieve this with good qubit memories12,19.

Two additional assumptions are used. The first is that there is no
error and no speed constraint on classical computations required to
interpret measurement outcomes and control future gates. The
second is that two-qubit gates can be applied to any pair of
qubits without delay or additional error. This assumption is
unrealistic, but the effect on the threshold is due primarily
to CNOTs acting within the ancillas needed for maintaining
one or two blocks encoding logical qubits. To account for this, we
can use higher effective EPGs or require low-error quantum
communication9,20,21.

The above assumptions are standard in analyses of fault-tolerant
architectures, but idealized. They are nevertheless believed to be
sufficiently realistic that results based on them are meaningful in
practice5,22–24.

The quantum codes
The C4/C6 architecture is based on concatenating two quantum
stabilizer codes, C4 and C6. The codes are chosen to detect and
correct errors with minimum effort. A stabilizer code is a common
eigenspace of a set of commuting products of Pauli operators (the
‘check operators’). Such products are denoted by strings of X, Y, Z
and I. For example, XIZ is a Pauli product on three qubits with X
acting on the first and Z on the last. C4 has check operators XXXX
and ZZZZ. It encodes a ‘qubit pair’ whose qubits may be labelled L
and S, and defined by encoded operators XL ¼ XXII, ZL ¼ ZIZI,
XS ¼ IXIX and ZS ¼ IIZZ. C4 is an optimal qubit-based one-error-
detecting code. C6 has check operators XIIXXX, XXXIIX, ZIIZZZ
and ZZZIIZ, which act on three consecutive qubit pairs. It encodes a
qubit pair defined by encoded operators XL ¼ IXXIII, ZL ¼ IIZZIZ,
XS ¼ XIXXII, ZS ¼ IIIZZI. C6 is an optimal qubit-pair-based one-
error-detecting code. The C4/C6 architecture uses C4 to obtain
level-1-encoded qubit pairs. We build subsequent levels by using
three encoded qubit pairs to form a next-level C6-encoded qubit
pair as shown in Fig. 1.

Given a joint eigenstate of the check operators, its list of
eigenvalues is the ‘syndrome’. The level-l encoding has check
operators that can be derived from the check and encoded operators
of C4 and C6. Ideally, the state of a level-l block has syndrome 0 (all
eigenvalues are þ1). In the presence of errors this is rarely the case,
so the encoded qubits’ state is defined only with respect to a current
‘Pauli frame’ and an implicit recovery scheme. The Pauli frame is
defined by a Pauli product that restores the error-free state of the
block to the syndrome 0 subspace. The implicit recovery scheme
determines the Pauli products needed to coherently map states with
other syndromes to one with the error-free syndrome. By using the
Pauli frame, we can avoid explicitly applying Pauli products for
error correction and teleportation compensation9,25. Error detection
and correction are based on measurements that retroactively deter-
mine the syndrome of the state (the current syndrome has already
been affected by further errors). An error is detected if the syndrome
is not error-free according to the Pauli frame. In ‘postselected’
quantum computing, the state is then rejected and the computa-
tion restarted. In standard quantum computing, the syndrome

Figure 1 Block structure of C 4/C 6 concatenated codes. The bottom line shows nine

blocks of four physical qubits. Each block encodes a level-1 qubit pair with C 4. The

encoded qubit pairs are shown in the line above. Formally, each such pair is

associated with two syndrome bits, shown below the encoded pair in a lighter shade,

which are accessible by syndrome measurements or decoding for error detection and

correction. The next level groups three level-1 qubit pairs into a block, encoding a level-2

qubit pair with C 6. The pair is associated with four syndrome bits. A level-2 block

consists of 12 physical qubits. Three level-2 qubit pairs are used to form a level-3 qubit

pair, again with C 6 and associated with four syndrome bits. The total number of

physical qubits in a level-3 block is 36. In general, a level-l block has 4 £ 3l21 physical

qubits.
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information is used to correct errors with a Pauli frame update. To
do so, we use the fact that C4 and C6 can detect any error of one
qubit and one qubit pair, respectively. If the location of the error is
known, it can be corrected. This leads to the following error
detection and correction (ED/EC) procedure: first we check the
level-1 C4 syndromes of each block of four qubits. For each block
where an error is detected, mark the encoded level-1 qubit pair as
having an error. Proceed to level 2 and check the (encoded) C6

syndrome for each block of three level-1 pairs. If exactly one of the
level-1 pairs has an error, use the C6 syndrome to correct it. If not,
mark the encoded level-2 pair as having an error unless none of the
three level-1 pairs has an error and the C6 syndrome is error-free
according to the Pauli frame. Continue in this fashion through all
higher levels. For optimizing state preparation, we can replace the
error-correction step by error detection at the top few levels,
depending on context, as explained below.

Error-correcting teleportation
To obtain syndrome information for a block B containing an
encoded qubit pair we use error-correcting teleportation. We first
prepare two blocks B1 and B2, each encoding a logical qubit pair so
that the first pair is maximally entangled with the second, in the
logical state (j0000l þ j0101l þ j1010l þ j1111l)/2. B 1 and B2

form an ‘encoded (or logical) Bell pair’. The encoded Bell pair is
prepared ‘fault-tolerantly’, so that each block’s errors are essentially
as though the physical qubits were subject to independent errors of
order g. The next step is to apply Bell measurements (the first step of
conventional quantum teleportation26) to corresponding physical
qubits in B and B1. This results in the transfer of B’s encoded state to
B2, up to a known change in the Pauli frame. It can be shown that
the Bell measurement outcomes reveal the eigenvalues of the
products of corresponding check operators on B and B1, which is
sufficient for inferring the needed syndrome for error detection
and correction. Error detection or correction is successful if the
combined errors from B and B1 are within the capabilities of the
codes. See ref. 16 for further details.

Encoded state preparation
Fault-tolerant architectures depend on having a plentiful supply of
verified, fault-tolerantly prepared encoded states. In the C4/C6

architecture, encoded Bell pairs are fundamental to preparing all
other such states. An encoded Bell pair on blocks B1 and B2 is
prepared at level l þ 1 from level-l-encoded Bell pairs in three steps.
The first step is to prepare level-l þ 1-encoded j00l in block B1 and
jþþl in block B2. C4 and C6 have the property that these states are
local variants of level-l ‘cat’ states (states such as ðj0…0lþ
j1…1lÞ=

ffiffiffi

2
p

Þ; which can be obtained and verified by linking level-l
Bell pairs. The second step is a ‘transversal’ CNOT consisting of
physical CNOTs applied from qubits of B1 to corresponding qubits
of B2. The third step involves error-correcting teleportations of
level-l sub-blocks of B1 and B2, which is required to manage errors
introduced in the first two steps and limit correlations between B1

and B2. The state preparation networks are shown in Supplemen-
tary Information A.

Logical Clifford gates for C4 and C6

For simplicity, we treat the qubits in a logical qubit pair identically
and ignore one of them for the purpose of computation. Prep-
aration of logical j00l and jþþl is accomplished by using the

Figure 2 Conditional logical errors with postselection. The plot shows logical CNOT errors

conditional on not detecting errors as a function of EPG parameter g at levels 0, 1 and 2.

The logical CNOT is implemented with transversal physical CNOTs and two error-

detecting teleportations, where the output state is accepted only if no errors are detected

in the teleportations. The data show the incremental error attributable to the logical CNOT

in the context of a longer computation (Supplementary Information B). The error bars are

68% confidence intervals. The solid lines are obtained by gradient-descent likelihood

maximization. Extrapolations are shown with dashed lines and suggest that logical EPG

improvements with increasing levels are possible above g ¼ 6%. Other operations’

errors for g ¼ 3% and level 2 are shown in the inset table. The decoding error is the

incremental error introduced by decoding a block into two physical qubits. The injection

error is the error in a logical state that we prepare by decoding one block of a logical Bell

pair and measuring the decoded qubits. Decoding and injection errors were found to

decrease from level 1 (decoding error 4:4^0:4
0:4 £ 1022; injection error 5:5^0:5

0:4 £ 1022Þ

to level 2.

Figure 3 Conditional and detected logical errors with error correction. The plot shows

incremental detected and conditional logical errors for a logical CNOT as a function of EPG

parameter g up to level 4. Error bars and lines are as described in the caption of Fig. 2.

The combination of error correction and detection is as required for the error-correcting

C 4/C 6 architecture. a, The logical CNOT’s error conditional on not detecting an

uncorrectable error. b, The probability of detecting an uncorrectable error. At g ¼ 1%,

the detected errors are 2:4^0:0
0:0 £ 1022 (level 3) and 2:4^1:0

0:7 £ 1023 (level 4). The

conditional errors are 6:4^0:6
0:6 £ 1024 (level 3) and 0:0^4:4

0:0 £ 1024 (level 4). For

comparison, the preparation errors at levels 3 and 4, respectively were found to be

2:1^0:3
0:3 £ 1024 and 0:0^1:0

0:0 £ 1024 (detected errors) and 3:3^7:5
2:7 £ 1026 and

0:0^1:0
0:0 £ 1024 (conditional errors). The measurement errors are 4:7^0:4

0:4 £ 1024 and

5:6^12:8
4:6 £ 1025 (detected errors) and 3:3^7:4

2:7 £ 1026 and 0:0^1:0
0:0 £ 1024

(conditional errors). Finally, the HAD errors at level 3 are 1:3^0:0
0:0 £ 1022 (detected error)

and 3:5^0:6
0:5 £ 1024 (conditional error).
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first step of the logical Bell pair preparation procedure followed
immediately by error-correcting teleportations of the sub-blocks.
The codes C4, C6 and their concatenations have the property that
logical CNOTs and measurements can be implemented transver-
sally22. This ensures fault tolerance. The HAD gate can be
implemented transversally with a permutation of the physical
qubits in a block. Permutations can be implemented by relabelling
without physical manipulations and are also fault-tolerant. To
control error propagation, we include with each logical gate
error-correcting teleportations of its blocks.

GGmin thresholds
For the purpose of establishing high thresholds, we first consider
postselected Gmin computing. Postselected computing is a model of
computing that abstracts and generalizes the key non-deterministic
aspects of techniques such as purification27 and verified state
preparation28. Here we use it to prepare states needed for scalable
quantum computing without having to specify the state-
preparation networks. Postselected computing is like standard
quantum computing except that when a gate is applied, the gate
may fail. If it fails, this is known. The probability of success must be
non-zero. There may be gate errors conditional on success, but
fault-tolerant postselected computing requires that such errors are
small. We implement fault-tolerant postselected computing with
the C4/C6 architecture by aborting the computation whenever an
error is detected. Error-correcting teleportation is replaced by error-
detecting teleportation, which uses the syndrome information only
for error detection. In ref. 23 we used a computer-assisted heuristic
analysis to obtain a threshold value of 3%, below which fault-
tolerant postselected Gmin computing is possible. Here we use direct
simulation of the error behaviour of postselected encoded CNOTs
with error-detecting teleportation at up to two levels of encoding
and physical EPGs of 1% # g # 3.75%. The simulation method is
explained in Supplementary Information B. The simulated con-
ditional logical errors are shown in Fig. 2 and suggest a threshold of
above 6% by extrapolation.

Scalable Gmin computing with the C4/C6 architecture requires
lower EPGs and the use of error correction to increase the prob-
ability of success to near 1. To optimize the resource requirements
needed to achieve a given logical EPG, the last level at which error
correction is used in the ED/EC procedure is dl levels below the
relevant top level, where dl depends on context and g. At higher
levels, errors are only detected. For simplicity and to enable
extrapolation by modelling, we examined a fixed strategy with
dl ¼ 1 in all state-preparation contexts and dl ¼ 0 (maximum
error correction) in the context of logical computation. The relevant
top level in a state preparation context is the level of a block
measurement or error-correcting teleportation of a sub-block, not
the logical level of the state that is eventually prepared. Each logical
gate now has a probability of detected but uncorrectable error, and a
probability of logical error conditional on not having detected an
error. Figure 3 shows both error probabilities up to level 4 for a
logical CNOT with error-correcting teleportation and EPGs
of g # 1%. The data indicate that the Gmin threshold for this
architecture is above 1%.

Universal computation
To complete the 1Gmin gate set so that we can implement arbitrary
quantum computations, it suffices to add HAD and preparation of
the state jp/8l ¼ cos(p/8)j0l þ sin(p/8)j1l29,30 in both qubits of a
logical pair. The logical errors of HAD are less than those of the
logical CNOT. To prepare logical jp/8ljp/8l in a qubit pair, we
obtain a logical Bell pair, decode its first block into two physical
qubits and make measurements to project the physical qubits’ states
onto jp/8l or the orthogonal state. If an orthogonal state is
obtained, we adjust the Pauli frame by Y operators accordingly.
Because of the entanglement between the physical qubits and the
logical ones, this prepares the desired logical state, albeit with error.
This procedure is ‘state injection’. To decode the first block of the
Bell pair, we first decode the C 4 sub-blocks and continue by
decoding six-qubit sub-blocks of C6. Syndrome information is
obtained in each step and can be used for error detection or
correction. The error in decoding is expected to be dominated by
the last decoding steps. Consequently, the error in the injected state
should be bounded as the number of levels increase, which we
verified by simulation. To remove errors from the injected states,
logical purification can be used30,31 and is effective if the error of the
injected state is less than 0.141 (ref. 31). The purification method
can be implemented fault-tolerantly to ensure that the purified
logical jp/8l states have errors similar to those of logical CNOTs
(Supplementary Information C).

Consider the threshold for fault-tolerant postselected universal
quantum computing. The logical HAD and injection errors at
g ¼ 3% and level 2 are shown in Fig. 2. The injection error is well
below the maximum allowed and is not expected to increase
substantially for higher levels. The injection error should scale
approximately linearly with EPG, so the extrapolated threshold
above 6% may apply.

The injection and purification method for preparing states
needed to complete the gate set works with the error-correcting
C4/C6 architecture. Consider state injection at g ¼ 1%. The context
for injection is state preparation, which determines the combi-
nation of error correction and detection as discussed above. The
conditional logical error after state injection was determined to be
8:6^0:6

0:5 £ 1023 at level 3 and 1:1^0:1
0:1 £ 1022 at level 4, comparable to

g and sufficiently low for jp/8l purification. As a result, the C4/C6

architecture enables scalable quantum computing at EPGs above
1%.

To obtain higher thresholds, we use fault-tolerant postselected
computing to prepare states in a code that can handle higher EPGs
than C4/C6 concatenated codes can. The states are chosen so that we
can implement a universal set of gates by error-correcting teleporta-
tion. Suppose that arbitrarily low logical EPGs are achievable with

Figure 4 Estimating C 4/C 6 resource requirements. The figure shows the number NCNOT

of physical CNOTs required per qubit and gate to implement computations of sizes

G ¼ 103, 105, …, 1034 (curves with G indicated). Other resources are dominated by

NCNOT. An order-of-magnitude estimate of the total number of physical CNOTs required by

a computation can be made as follows: we determine the number G of gates required,

including ‘memory’ gates. Using the corresponding curve in the figure, we find NCNOT at

the physical EPG. We then multiply NCNOT by G and the average number of additional

logical CNOTs per gate required for fault-tolerantly preparing and purifying states such as

logical jp/8l. A conservative estimate for the latter number is 300. With maximum

parallelism, the ‘scale-up’ (number of physical qubits per logical qubit) is of the same

order as NCNOT. If the memory error is not too large, this can be reduced to about

2(1 þ 2(l 2 1))3l21 with moderate parallelism. The circled numbers are at the points on

each curve above which the indicated level of concatenation must be used. Levels

increment at each step-like feature of the curves.
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the C4/C6 architecture for postselected computing. To compute
scalably, we choose a sufficiently high level l for the C4/C6 archi-
tecture and a very good error-correcting quantum code C e. The first
step is to prepare the desired C e-encoded states using level-l-
encoded qubits, in essence concatenating C e onto level l of the
C4/C6 architecture. Suppose that the conditional error in the logical
state prepared can be made arbitrarily small. The second step is to
decode each block of the C4/C6 architecture to physical qubits to
obtain unconcatenated C e-logical states (partial decoding). Once
these states are successfully prepared, we use them to implement
each logical gate by error-correcting teleportation. Simulations
show that the postselected decoding introduces an error & g for
each decoded qubit (Fig. 2). There is no postselection in error-
correcting teleportation with C e, and it is sensitive to decoding
error in two blocks (,2g) as well as the error of the CNOT
(,g) and the two physical measurements (,8g/15) required for
the Bell measurement. Hence, the effective error per qubit that
needs to be corrected is ,3.53g. The maximum error probability
per qubit correctable by known codes C e is ,0.19 (ref. 32).
Thus, if g& 5% (conservatively below 0.19/3.53) the C e archi-
tecture can have small logical errors, say below 1023. Scalable
quantum computing is then possible by using C e-encoded qubits
as the founding qubits for the error-correcting C4/C6 architec-
ture (for example). Because 5% is below the extrapolated
threshold for the postselected C 4/C 6 architecture, scalable
quantum computing may be possible with our architecture at
EPGs as high as 5% (or at least 3% without extrapolation).
Although the postselection overheads are extreme, the above
architecture is theoretically efficient: the asymptotic overheads for
implementing a quantum computation are polynomial in terms of
the computation’s size.

Resources
The resource requirements for the error-correcting C4/C6 architec-
ture can be mapped out as a function of g for different sizes of
computations. We do not have analytical expressions for the
resources for logical Bell pair preparation or for the logical errors
as a function of g and, with our current capabilities, we are not able
to determine them in enough detail by simulation. We therefore use
naive models to approximate the expressions needed. The number
of physical CNOTs used in a logical Bell-pair preparation is
modelled by functions of the form C=ð12gÞk, which would be
correct on average if the state-preparation network had C gates of
which k failed independently with probability g, and the network
was repeatedly applied until none of the k gates failed. C and k
depend on the level of concatenation. The logical error probabilities
are modelled at level l $ 1 by pd(l) ¼ d(l)g f(lþ1) (detected error)
and p c(l) ¼ c(l)g f(lþ2) (conditional logical error), where f(0) ¼ 0,
f(1) ¼ 1, f(l þ 1) ¼ f(l) þ f(l 2 1) is the Fibonacci sequence. These
expressions are asymptotically correct as g ! 0. We verified that
they model the desired values well and determined the constants
at low levels by simulation and at high levels by extrapolation
(Supplementary Information C).

Figure 4 shows the resource requirements as a function of
computation size. Following the instructions in the caption, we
obtain the following order-of-magnitude estimates: at an EPG of
1%, a computation with 103 or 105 gates and (say) 100 or more
qubits requires 6 £ 1012 or 2 £ 1017 physical CNOTs, respectively. A
more precise calculation shows that 1.2 £ 1014 physical CNOTs
are required for 1,000 logical jp/8l preparations (Supplementary
Information C). Given current capabilities, the outputs of these
computations are not predictable with classical algorithms. The
quantum resource requirements are large and at present difficult to
realize. However, comparable complexity is achieved in today’s
classical computers: central processing units have 108 or more
transistors operating at rates of 109 steps per second33, making
available up to 1017 bit operations per second.

The resource requirements decrease rapidly with lower EPGs. At
EPGs well below 1023, an architecture based on unconcatenated
block codes such as that of Steane9 is expected to be more efficient.
Indeed, at an EPG of 1024, such architectures use one to two orders
of magnitude fewer resources. The C4/C6 architecture still has the
advantage of simplicity, and of yielding more reliable answers
conditional on having no detected errors.

Discussion
An important use of studies of fault-tolerant architectures is to
provide guidelines for EPGs that should be achieved to meet the
low-error criterion for scalability. Such guidelines depend on the
details of the relevant error models and constraints on two-qubit
gates. Nevertheless, the value of g ¼ 1024 has often been cited as the
EPG to be achieved. With architectures such as that of Steane9,34 and
the one introduced here, resource requirements at g ¼ 1023 are
now comparable to what they were for g ¼ 1024 at the time this
value was starting to be cited22.

Several open problems arise from the work presented here. Can
the high thresholds evidenced by our simulations be mathematically
proved? Are thresholds for postselected computing strictly higher
than thresholds for scalable standard quantum computing? Recent
work by Reichardt34 shows that Steane’s architecture can be made
more efficient by the judicious use of error detection, improving
Steane’s threshold estimates to around 1022. How do the available
fault-tolerant architectures compare for EPGs between 1023 and
1022? It would be helpful to improve significantly the resource
requirements of fault-tolerant architectures, particularly at high
EPGs. A
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