
1. Introduction

Mainstream computers base integer and floating
point arithmetic on fixed word lengths. As a conse-
quence, only values with a limited number of signifi-
cant digits can be represented directly, so that the
results of arithmetic operations may have to be round-
ed off or truncated. Such errors can be avoided or, at
least, mitigated, by implementing special algorithms
for the execution of arithmetic operations. A fully
“exact arithmetic”, however, would have to be based on
quotients of integers for representing numerical values.
In any case, a final limitation is due to finite memory.

The need for exact arithmetic became apparent dur-
ing the development of software for generating triangu-
lar and tetrahedral nets from very large point sets.
Typically, this need is not due to high accuracy require-
ments for results—the input data are often noisy or

given up to only a few significant digits—but is rather
due to the need to maintain the consistency of a combi-
natorial structure. Building or manipulating such geom-
etry-based combinatorial structures requires the calcu-
lation of indicators such as determinants in order to
evaluate their sign and to check for zero values: round-
off may lead to a false sign or zero value. An example
considered later in this paper is to decide whether four
given spatial points are coplanar. The approach of using
exact computations for implementing computational
geometry algorithms in a robust manner has been
addressed in [2], [3], [4], [5], [6], [7]. Some computa-
tional geometry implementations ([2], [3], [4], [5])
reduce computational effort by utilizing exact arith-
metic selectively whenever a decision might be affect-
ed by round-off.

In this paper, we document software for exact integer
arithmetic, accommodating an indeterminate number of

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

79

[J. Res. Natl. Inst. Stand. Technol. 111, 79-88 (2006)]

Integer Representation of Decimal Numbers for
Exact Computations

Volume 111 Number 2 March-April 2006

Javier Bernal and Christoph
Witzgall

National Institute of Standards
and Technology,
Gaithersburg, MD 20899, USA

jbernal@nist.gov
witzgall@nist.gov

A scheme is presented and software is
documented for representing as integers
input decimal numbers that have been
stored in a computer as double precision
floating point numbers and for carrying
out multiplications, additions and subtrac-
tions based on these numbers in an exact
manner. The input decimal numbers must
not have more than nine digits to the left
of the decimal point. The decimal fractions
of their floating point representations are
all first rounded off at a prespecified loca-
tion, a location no more than nine digits
away from the decimal point. The number
of digits to the left of the decimal point for
each input number besides not being
allowed to exceed nine must then be such

that the total number of digits from the
leftmost digit of the number to the location
where round-off is to occur does not
exceed fourteen.

Key words: computational geometry;
Delaunay triangulation; exact integer arith-
metic; power diagram; regular triangula-
tion; robustness; Voronoi diagram.

Accepted: December 14, 2005

Available online: http://www.nist.gov/jres

digits, for multiplication, addition, subtraction, but
excluding division. We found that, in many computa-
tional geometry applications, decision variables such as
determinants can be calculated without division. Also
the sign of a decision variable stated as a quotient but
not evaluated is readily derived from the signs of the
numerator and denominator.

We also describe a preprocessing step, called “two-
integer decomposition”, which leads from floating
point input to one composed of integers only. At the
root of this step lies the concept of space as an integer
grid of points, all of which have integer coordinates in
some shared unit. After completing the transition from
floating point numbers to intermediate representations
as pairs of integers—prompted by the fact that Fortran
77 does not provide a double precision integer
format—a polynomial decomposition creates the num-
ber representations to be used in the exact arithmetic
calculations. Software for this preprocessing step
together with software for exact integer arithmetic has
been successfully incorporated into several computa-
tional geometry related programs such as REGTET [1].

In what follows, a “standard computer” is a comput-
er that uses 64 bits of storage for a double precision
number and 32 bits for an integer. Given a standard
computer, even though it may not store exactly an input
decimal number as a double precision floating point
number, it is safe to assume that the number will be rep-
resented as accurately as possible by a double precision
floating point number up to its fourteenth significant
digit.

2. Two-Integer Decomposition

Let x(i), i = 1, ..., n, be a double precision array into
which input numbers xi, i = 1, ..., n, have been read. The
two-integer decomposition process is a preprocessing
step that takes place before any computations based on
the input data are carried out. It rounds off the numbers
in the array at a prespecified location of their decimal
fractions and decomposes each rounded off number
into two integers that are saved in integer arrays, say
ix(i), ix2(i), i = 1, ..., n. The rounded off numbers are
then saved in array x(i), i = 1, ..., n.

Given integers k, l, 1 ≤ k ≤ 9, 0 ≤ l ≤ 9, k + l ≤ 14,
and assuming each input number xi, i = 1, ..., n, has no
more that k digits to the left of the decimal point, each
number x(i), i = 1, ..., n, is rounded off at the lth digit of
its decimal fraction and decomposed into two integers
in one of two ways according to its size. If the
absolute value of x(i) times (10.0d0)l is less than

230(=1073741824), x(i) is multiplied by (10.0d0)l and
rounded off at the decimal point. The resulting integer
is then placed in ix(i) while ix2(i) is set to zero. Finally,
x(i) is redefined to be the double precision value of
integer ix(i) divided by (10.0d0)l. On the other hand, if
the absolute value of x(i) times (10.0d0)l exceeds or
equals 230, x(i) is truncated at the decimal point. The
resulting integer (absolute value less than 230 since k ≤
9) is placed in ix(i). In addition, the signed decimal
fraction obtained by subtracting the double precision
value of this integer from the initial value of x(i) is mul-
tiplied by (10.0d0)l and rounded off at the decimal
point. The resulting integer (absolute value less than 230

since l ≤ 9) is placed in ix2(i). Next, x(i) is redefined to
be the double precision value of integer ix(i) plus the
value obtained by dividing the double precision value
of integer ix2(i) by (10.0d0)l. Finally, if the integer
ix2(i) is zero then ix2(i) is set to 230 so that ix2(i) is zero
if and only if the initial absolute value of x(i) (before
the two-integer decomposition process) times (10.0d0)l

is less than 230.
The following is Fortran code for carrying out the

two-integer decomposition process. Variables are either
integer or double precision following convention. It is
noted that while some loss in precision may occur at the
time the input numbers are read and transformed into
double precision floating point numbers, some addi-
tional loss in precision may occur here as well when the
decimal point in a number is shifted by dividing or mul-
tiplying it by a multiple of 10.0d0, when the signed
decimal fraction of a number is obtained by truncating
the number at its decimal point and subtracting the
result from the initial value of the number, and when a
number is rounded off with the two-integer decomposi-
tion process. However once the two-integer decompo-
sition process is completed all computations that fol-
low, exact and otherwise, are carried out in terms of the
arrays x(i), ix(i), ix2(i), i = 1, ..., n, under the assump-
tion that for the purposes of the user for each
i, i = 1, ..., n, x(i) represents closely enough the input
number xi rounded off at the lth digit of its decimal frac-
tion, and an integer (not necessarily stored by the com-
puter) in terms of ix(i) and ix2(i) represents closely
enough the input number xi times 10l rounded off at the
decimal point.

mfull=1073741824
if(l.lt.0 .or. l.gt.9) stop 10
isclu = 1
dscle = 1.0d0
if(l.eq.0) go to 200
do 100 i = 1, l

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

80

isclu = 10*isclu
dscle = 10.0d0*dscle

100 continue
200 continue

dfull = dble(mfull)
dfill=dfull/dscle
do 300 i = 1, n

ix2(i) = 0
if(dabs(x(i)).lt.dfill) then

ix(i) = idnint(dscle*x(i))
if(iabs(ix(i)).lt.mfull) then

x(i) = dble(ix(i))/dscle
go to 300

endif
endif
if(dabs(x(i)).ge.dfull) stop 20
ix(i) = idint(x(i))
if(iabs(ix(i)).ge.mfull) stop 30
decml = (x(i) - dint(x(i)))*dscle
ix2(i) = idnint(decml)
if(iabs(ix2(i)).eq.0) then

x(i) = dble(ix(i))
ix2(i) = mfull

else
x(i) = dble(ix(i)) + (dble(ix2(i))/dscle)

endif
300 continue

3. Polynomial Decomposition

Given an integer l, 0 ≤ l ≤ 9, let xi, i = 1, ..., n, be
input numbers whose double precision floating point
representations have been rounded off at the lth digit of
their decimal fractions through the two-integer decom-
position process. Let x(i), ix(i), ix2(i), i = 1, ..., n be the
arrays produced by the two-integer decomposition
process that contain the rounded off numbers and the
two-integer decompositions. For each i, i = 1, ..., n, an
integer J(i, l) is symbolically defined as follows (its
actual value is not necessarily computed or stored by
the computer). If ix2(i) equals zero then J(i, l) is set
equal to ix(i). If ix2(i) equals 230 then J(i, l) is set equal
to ix(i) · 10l. Finally, if ix2(i) is neither zero nor 230 then
J(i, l) is set to ix(i) · 10l + ix2(i). In all cases for each i,
i = 1, ..., n, J(i, l) is considered to approximate closely
enough (for the purposes of the user) the input number
xi times 10l rounded off at the decimal point.

Set M to 215. Given J(i, l), 1 ≤ i ≤ n, the polynomial
decomposition process is a procedure (presented below
in the form of Fortran subroutine decmp2) that decom-
poses the integer J(i, l) into a unique collection of inte-

gers isga, isga in {–1, 0, 1}, ika, ika > 0, ak, 0 ≤ ak < M,
k = 1, ..., ika, such that J(i, l) equals isga(Σika

k=1 ak ·Mk–1),
isga the sign of J(i, l). Integers ak, k = 1, ..., ika, are
saved in an integer array, say ia(k), k = 1, ..., ika, and
the collection of integers isga, ika, ia(k), k = 1, ..., ika,
and the symbolic expression isga(Σika

k=1 ia(k) · Mk–1) are
then called, respectively, the polynomial decomposi-
tion and the symbolic polynomial representation of
J(i, l), with isga as the sign of the representation. For
each i, i = 1, ..., n, the polynomial decomposition of the
integer J(i, l) is identified each time an exact computa-
tion involving additions, subtractions, or multiplica-
tions is required that references the input number xi.
During one such computation, for each i, 1 ≤ i ≤ n, if
the number xi is referenced in the computation, once the
polynomial decomposition of the corresponding integer
J(i, l) is identified, each reference of xi in the computa-
tion is replaced by the symbolic polynomial representa-
tion of J(i, l). The computation then takes effect as a
sequence of additions, subtractions, or multiplications
of symbolic polynomial representations with the final
result being itself the symbolic polynomial representa-
tion of some integer. This final result can usually be
used in only one of two ways. If it is known that for
some positive integer m the integer that is equal to the
final symbolic polynomial representation is approxi-
mately equal to the product of (10l)m and the true value
of the computation, then this integer is computed
approximately as a double precision floating point
number from its symbolic polynomial representation
and the true value of the computation is then approxi-
mately obtained by dividing it by ((10.0d0)l)m. On the
other hand, if the purpose of the computation is simply
that of obtaining the sign of the true result then the sign
of the final symbolic polynomial representation is a sat-
isfactory answer.

The concepts of polynomial decomposition and sym-
bolic polynomial representation defined above for
J(i, l), 1 ≤ i ≤ n, can also be defined for any integer K
(not necessarily stored by the computer) in the same
manner. Accordingly, the following is a Fortran subrou-
tine called decomp for finding the polynomial decom-
position isga, ia(k), k = 1, 2, (ika is already known to
equal 2) of an integer iwi (stored by the computer) with
absolute value less than 230. Here mhalf equals
215(=32768).

subroutine decomp(ia, isga, iwi, mhalf)
integer ia(*), isga, iwi, mhalf, ivi
if(iwi.gt.0) then

isga = 1
ivi = iwi

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

81

elseif(iwi.lt.0) then
isga =-1
ivi = -iwi

else
isga = 0
ia(1) = 0
ia(2) = 0
return

endif
ia(2) = ivi/mhalf
ia(1) = ivi - ia(2)*mhalf
return
end

In particular if isclu is set to 10l then isclu is less than
230 (since l ≤ 9) so that the polynomial decomposition
isgu (equal to 1), iu(i), i = 1, 2, (iku is already known to
equal 2) of isclu can be obtained by calling subroutine
decomp with a Fortran instruction as follows.

call decomp(iu, isgu, isclu, mhalf)

Finally, the following is a Fortran subroutine called
decmp2 for finding the polynomial decomposition isga,
ika, ia(k), k = 1, ..., ika, of the integer J(i, l), 1 ≤ i ≤ n.
Here iwi equals ix(i), iwi2 equals ix2(i), mhalf equals
215, mfull equals 230, and iu(k), k = 1, 2, is an array such
that the polynomial decomposition of 10l is iu(1), iu(2)
(isgu and iku are already known to equal 1 and 2,
respectively). In addition, it is assumed that subroutines
mulmul and muldif (presented below) exist for multi-
plying and subtracting, respectively, two symbolic
polynomial representations.

subroutine decmp2(ia, isga, ika, iwi, iwi2, mhalf, mfull, iu)
integer nkmax
parameter (nkmax=5)
integer ia(*), isga, ika, iwi, iwi2, mhalf, mfull, iu(*)
integer ie(nkmax), io(nkmax), isge, isgo, ike, iko, isgu, iku
call decomp(ia, isga, iwi, mhalf)
ika = 2
if(iwi2.ne.0) then

isgu = 1
iku = 2
call mulmul(ia, iu, ie, isga, isgu, isge, ika, iku,

* ike,nkmax,mhalf)
if(iwi2.eq.mfull) iwi2 = 0
call decomp(io, isgo, iwi2, mhalf)
isgo = -isgo
iko = 2
call muldif(ie, io, ia, isge, isgo, isga, ike, iko, ika,

* nkmax,mhalf)

endif
return
end

4. Multiplying Symbolic Polynomial
Representations

Given the polynomial decompositions isga, ika,
ia(k), k = 1, ..., ika, and isgb, ikb, ib(k), k = 1, ..., ikb, of
two integers K1 and K2, respectively, the following is a
Fortran subroutine called mulmul that produces the
polynomial decomposition isgo, iko, io(k), k = 1, ...,
iko, of the integer K1 · K2 by multiplying the symbolic
polynomial representation of K1 by that of K2 (as poly-
nomials) to produce a symbolic polynomial representa-
tion of K1 · K2 from which the polynomial decomposi-
tion of K1 · K2 can be obtained. Here nkmax is the
dimension of the arrays ia, ib, io in the calling routine
and mhalf equals 215. It is noted that the value of mhalf
is of importance here since given integers i, j, 1 ≤ i ≤
ika, 1 ≤ j ≤ ikb, then 0 ≤ ia(i) < 215, 0 ≤ ib(j) < 215, so
that the product ia(i) · ib(j) is less than 230 and therefore
can be stored in a 32 bit integer word.

subroutine mulmul(ia, ib, io, isga, isgb, isgo, ika, ikb, iko,
* nkmax,mhalf)

integer ia(*), ib(*), io(*)
integer isga, isgb, isgo, ika, ikb, iko, nkmax, mhalf
integer i, ipt, ipr, iko1, k, j
if(isga.eq.0.or.isgb.eq.0)then

isgo=0
iko = 2
io(1) = 0
io(2) = 0
return

endif
iko = ika + ikb
if(iko.gt.nkmax) stop 110
if(isga.gt.0)then

if(isgb.gt.0)then
isgo = 1

else
isgo =-1

endif
else

if(isgb.gt.0)then
isgo =-1

else
isgo = 1

endif
endif

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

82

iko1 = iko - 1
ipr = 0
do 200 i = 1, iko1
ipt = ipr
k = i
do 180 j = 1, ikb
if(k .lt. 1) go to 190
if(k .gt. ika) go to 150
ipt = ipt + ia(k)*ib(j)

150 continue
k = k - 1

180 continue
190 continue

ipr = ipt/mhalf
io(i) = ipt - ipr*mhalf

200 continue
io(iko) = ipr
if(ipr.ge.mhalf) stop 120
iko1 = iko
do 300 i = iko1, ika+1, -1
if(io(i) .ne. 0) go to 400
iko = iko - 1

300 continue
400 continue

return
end

5. Subtracting Symbolic Polynomial
Representations

Given the polynomial decompositions isga, ika,
ia(k), k = 1, ..., ika, and isgb, ikb, ib(k), k = 1, ..., ikb, of
two integers K1 and K2, respectively, the following is a
Fortran subroutine called muldif that produces the
polynomial decomposition isgo, iko, io(k), k = 1, ...,
iko, of the integer K1 – K2 by subtracting the symbolic
polynomial representation of K2 from that of K1 (as
polynomials) to produce a symbolic polynomial repre-
sentation of K1 – K2 from which the polynomial decom-
position of K1 – K2 can be obtained. Here nkmax is the
dimension of the arrays ia, ib, io in the calling routine
and mhalf equals 215. It is noted that by setting isgb
equal to –isgb the polynomial decomposition of K1 + K2

can also be obtained with this subroutine.

subroutine muldif(ia, ib, io, isga, isgb, isgo, ika, ikb, iko,
* nkmax,mhalf)

integer ia(*), ib(*), io(*)
integer isga, isgb, isgo, ika, ikb, iko, nkmax, mhalf
integer i, iko1, irel
if(isgb.eq.0)then

if(isga.eq.0)then
isgo=0
iko = 2
io(1) = 0
io(2) = 0
return

endif
isgo = isga
iko = ika
do 100 i=1,iko

io(i) = ia(i)
100 continue

elseif(isga.eq.0)then
isgo =-isgb
iko = ikb
do 200 i=1,iko

io(i) = ib(i)
200 continue

else
iko = ika
if(ikb.lt.ika) then

do 300 i=ikb+1,ika
ib(i) = 0

300 continue
elseif(ika.lt.ikb) then

iko = ikb
do 400 i=ika+1,ikb

ia(i) = 0
400 continue

endif
if(isga*isgb.gt.0)then

irel = 0
do 500 i = iko, 1, -1

if(ia(i).gt.ib(i))then
irel = 1
go to 600

elseif(ia(i).lt.ib(i))then
irel = -1
go to 600

endif
500 continue
600 continue

if(irel.eq.0)then
isgo = 0
do 700 i=1,iko

io(i) = 0
700 continue

else
isgo=isga*irel
io(1) = (ia(1)-ib(1))*irel
do 800 i=2,iko

if(io(i-1).lt.0) then

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

83

io(i) =-1
io(i-1) = io(i-1) + mhalf

else
io(i) = 0

endif
io(i) = io(i) + (ia(i)-ib(i))*irel

800 continue
if(io(iko).lt.0) stop 210

endif
else

isgo=isga
io(1) = ia(1)+ib(1)
do 900 i=2,iko

if(io(i-1).ge.mhalf) then
io(i) = 1
io(i-1) = io(i-1) - mhalf

else
io(i) = 0
endif
io(i) = io(i) + ia(i)+ib(i)

900 continue
if(io(iko).ge.mhalf) then

iko = iko+1
if(iko.gt.nkmax) stop 220
io(iko) = 1
io(iko-1) = io(iko-1) - mhalf

endif
endif

endif
if(iko .eq. 2) go to 990
iko1 = iko
do 950 i = iko1, 3, -1

if(io(i) .ne. 0) go to 990
iko = iko - 1

950continue
990continue

return
end

6. Application: Locating a Point Relative
to a Plane

Given an integer n, n ≥ 4, let S be a set of n points in
3-dimensional space. Given an integer l, 0 ≤ l ≤ 9, let xi,
yi, zi, i = 1, ..., n, be the input decimal coordinates of the
points in S, and assume that their double precision
floating point representations have been rounded off at
the lth digit of their decimal fractions through applica-
tions, one per coordinate, of the two-integer decompo-
sition process. Accordingly, let x(i), ix(i), ix2(i), y(i),
iy(i), iy2(i), z(i), iz(i), iz2(i), i = 1, ..., n, be the arrays

produced by the three applications of the two-integer
decomposition process that contain the rounded off x-,
y-, z-coordinates and their two-integer decompositions.

Given points p1, p2, p3 in S that are vertices of a non-
degenerate triangle, a fundamental problem in compu-
tational geometry is that of finding the location of a
point p4 in S relative to the plane H that contains the tri-
angle. Let H+ be the open half-space defined by H for
which p1, p2, p3 appear in a counterclockwise direction
around the boundary of the triangle when looking at the
triangle from H+. Let H– be the other half-space defined
by H. Determining in which of H, H+, H–, the point p4

is located may not on occasion be satisfactorily done
using floating point arithmetic. Accordingly, the fol-
lowing is a Fortran subroutine called crsinn for doing
this using polynomial decompositions. On output the
sign isgo (–1, 0, 1) of some polynomial decomposition
determines the location of p4 (H–, H, H+).

This routine actually does more. It produces polyno-
mial decompositions isgox, ikox, iox(k), k = 1, ..., ikox,
isgoy, ikoy, ioy(k), k = 1, ..., ikoy, isgoz, ikoz, ioz(k),
k = 1, ..., ikoz, of integers that are the coordinates of a
vector v pointing into H+ and perpendicular to H. It also
produces the polynomial decomposition isgo, iko, io(k),
k = 1, ..., iko, of an integer whose sign isgo determines
the location of p4 and whose value when divided by
both 10l and the length of v is the perpendicular dis-
tance from p4 to H. Here mhalf equals 215, mfull equals
230, and if ir, isec, ithi, ifou are locations in the arrays ix,
ix2, etc. corresponding to the points p1, p2, p3, p4,
respectively. In addition, isclp(k), k = 1, 2, is an array
such that the polynomial decomposition of 10l is
isclp(1), isclp(2) (the sign of 10l and the dimension of
array isclp are already known to be 1 and 2, respective-
ly).

subroutine crsinn(ix, iy, iz, ix2, iy2, iz2, ifir, isec, ithi,
* ifou, mhalf, mfull, isclp, io, isgo, iko, iox,
* isgox, ikox, ioy, isgoy, ikoy, ioz, isgoz, ikoz)

integer ix(*), iy(*), iz(*), ix2(*), iy2(*), iz2(*)
integer io(*), iox(*),ioy(*), ioz(*)
integer ifir, isec, ithi, ifou
integer isclp(*), mhalf, mfull, nkmax
parameter (nkmax = 30)
integer iu(nkmax), iv(nkmax), iw(nkmax)
integer ixt(nkmax), iyt(nkmax), izt(nkmax)
integer ix3(nkmax), iy3(nkmax), iz3(nkmax)
integer ix4(nkmax), iy4(nkmax), iz4(nkmax)
integer ixf(nkmax), iyf(nkmax), izf(nkmax)
integer ixfiw, iyfiw, izfiw, ixsew, iysew, izsew
integer ixthw, iythw, izthw, ixfow, iyfow, izfow
integer ixfi2, iyfi2, izfi2, ixse2, iyse2, izse2

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

84

integer ixth2, iyth2, izth2, ixfo2, iyfo2, izfo2
integer isgxf, isgyf, isgzf, ikxf, ikyf, ikzf
integer isgx2, isgy2, isgz2, ikx2, iky2, ikz2
integer isgx3, isgy3, isgz3, ikx3, iky3, ikz3
integer isgx4, isgy4, isgz4, ikx4, iky4, ikz4
integer isgo, iko, isgox, ikox, isgoy, ikoy, isgoz, ikoz
integer isgu, isgv, isgw, iku, ikv, ikw
ixfiw = ix(ifir)
iyfiw = iy(ifir)
izfiw = iz(ifir)
ixsew = ix(isec)
iysew = iy(isec)
izsew = iz(isec)
ixthw = ix(ithi)
iythw = iy(ithi)
izthw = iz(ithi)
ixfow = ix(ifou)
iyfow = iy(ifou)
izfow = iz(ifou)
ixfi2 = ix2(ifir)
iyfi2 = iy2(ifir)
izfi2 = iz2(ifir)
ixse2 = ix2(isec)
iyse2 = iy2(isec)
izse2 = iz2(isec)
ixth2 = ix2(ithi)
iyth2 = iy2(ithi)
izth2 = iz2(ithi)
ixfo2 = ix2(ifou)
iyfo2 = iy2(ifou)
izfo2 = iz2(ifou)
call decmp2(ixf, isgxf, ikxf, ixfiw, ixfi2, mhalf, mfull, isclp)
call decmp2(iyf, isgyf, ikyf, iyfiw, iyfi2, mhalf, mfull, isclp)
call decmp2(izf, isgzf, ikzf, izfiw, izfi2, mhalf, mfull, isclp)
call decmp2(io, isgo, iko, ixsew, ixse2, mhalf, mfull, isclp)
call muldif(io, ixf, ixt, isgo, isgxf, isgx2, iko, ikxf, ikx2,

* nkmax,mhalf)
call decmp2(io, isgo, iko, iysew, iyse2, mhalf, mfull, isclp)
call muldif(io, iyf, iyt, isgo, isgyf, isgy2, iko, ikyf, iky2,

* nkmax,mhalf)
call decmp2(io, isgo, iko, izsew, izse2, mhalf, mfull, isclp)
call muldif(io, izf, izt, isgo, isgzf, isgz2, iko, ikzf, ikz2,

* nkmax,mhalf)
call decmp2(io, isgo, iko, ixthw, ixth2, mhalf, mfull, isclp)
call muldif(io, ixf, ix3, isgo, isgxf, isgx3, iko, ikxf, ikx3,

* nkmax,mhalf)
call decmp2(io, isgo, iko, iythw, iyth2, mhalf, mfull, isclp)
call muldif(io, iyf, iy3, isgo, isgyf, isgy3, iko, ikyf, iky3,

* nkmax,mhalf)
call decmp2(io, isgo, iko, izthw, izth2, mhalf, mfull, isclp)
call muldif(io, izf, iz3, isgo, isgzf, isgz3, iko, ikzf, ikz3,

* nkmax,mhalf)

call decmp2(io, isgo, iko, ixfow, ixfo2, mhalf, mfull, isclp)
call muldif(io, ixf, ix4, isgo, isgxf, isgx4, iko, ikxf, ikx4,

* nkmax,mhalf)
call decmp2(io, isgo, iko, iyfow, iyfo2, mhalf, mfull, isclp)
call muldif(io, iyf, iy4, isgo, isgyf, isgy4, iko, ikyf, iky4,

* nkmax,mhalf)
call decmp2(io, isgo, iko, izfow, izfo2, mhalf, mfull, isclp)
call muldif(io, izf, iz4, isgo, isgzf, isgz4, iko, ikzf, ikz4,

* nkmax,mhalf)
call mulmul(iyt, iz3, iv, isgy2, isgz3, isgv, iky2, ikz3, ikv,

* nkmax,mhalf)
call mulmul(izt, iy3, iu, isgz2, isgy3, isgu, ikz2, iky3, iku,

* nkmax,mhalf)
call muldif(iv, iu, iox, isgv, isgu, isgox, ikv, iku, ikox,

* nkmax,mhalf)
call mulmul(iox, ix4, io, isgox, isgx4, isgo, ikox, ikx4, iko,

* nkmax,mhalf)
call mulmul(izt, ix3, iv, isgz2, isgx3, isgv, ikz2, ikx3, ikv,

* nkmax,mhalf)
call mulmul(ixt, iz3, iu, isgx2, isgz3, isgu, ikx2, ikz3, iku,

* nkmax,mhalf)
call muldif(iv, iu, ioy, isgv, isgu, isgoy, ikv, iku, ikoy,

* nkmax,mhalf)
call mulmul(ioy, iy4, iu, isgoy, isgy4, isgu, ikoy, iky4, iku,

* nkmax,mhalf)
isgu =-isgu
call muldif(io, iu, iw, isgo, isgu, isgw, iko, iku, ikw,

* nkmax,mhalf)
call mulmul(ixt, iy3, iv, isgx2, isgy3, isgv, ikx2, iky3, ikv,

* nkmax,mhalf)
call mulmul(iyt, ix3, iu, isgy2, isgx3, isgu, iky2, ikx3, iku,

* nkmax,mhalf)
call muldif(iv, iu, ioz, isgv, isgu, isgoz, ikv, iku, ikoz,

* nkmax,mhalf)
call mulmul(ioz, iz4, iu, isgoz, isgz4, isgu, ikoz, ikz4, iku,

* nkmax,mhalf)
isgu =-isgu
call muldif(iw, iu, io, isgw, isgu, isgo, ikw, iku, iko,

* nkmax,mhalf)
return
end

Sometimes besides knowing the location of the point
p4 relative to the plane H it may be desirable to know
the perpendicular distance from p4 to H. The following
is Fortran code for this purpose. It uses the polynomial
decompositions that are part of the output of subroutine
crsinn. Variables here are either integer or double pre-
cision following convention. Here r215 equals
(2.0d0)15, dscle equals (10.0d0)l, and dist is the result-
ing signed perpendicular distance. In addition, it is
assumed that subroutine doubnm (presented below)

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

85

exists for transforming the polynomial decomposition
of an integer into the double precision floating point
value of the integer.

call crsinn(ix, iy, iz, ix2, iy2, iz2, ifir, isec, ithi, ifou,
* mhalf, mfull, isclp, io, isgo, iko, iox, isgox,
* ikox, ioy, isgoy, ikoy, ioz, isgoz, ikoz)

call doubnm(io, isgo, iko, r215, dnum)
call doubnm(iox, isgox, ikox, r215, xnum)
call doubnm(ioy, isgoy, ikoy, r215, ynum)
call doubnm(ioz, isgoz, ikoz, r215, znum)
dnux = dmax1(dabs(xnum),dabs(ynum),dabs(znum))
xnum = xnum/dnux
ynum = ynum/dnux
znum = znum/dnux
dnom = dsqrt(xnum**2+ynum**2+znum**2)
dist = ((dnum/dnux)/dnom)/dscle

The following is subroutine doubnm that was called
above.

subroutine doubnm(io, isgo, iko, r215, dnum)
integer io(*)
double precision dnum, r215, rpwr
integer isgo, iko, i
if(isgo.eq.0) then

dnum = 0.0d0
go to 900

else
if(iko .lt. 2) stop 310
if(iko .gt. 68) stop 320
rpwr = 1.0d0
dnum = dble(io(1))
do 100 i = 2, iko

rpwr = rpwr*r215
dnum = dnum + dble(io(i))*rpwr

100 continue
endif
if(isgo.lt.0) dnum = -dnum

900continue
return
end

7. Numerical Examples

Twelve lines follow, each line containing three num-
bers. Each line corresponds to a point in 3-dimensional
space, and the three numbers in the line correspond to
the x-, y-, z-coordinates of the point, in that order.
Given i, 1 ≤ i ≤ 12, point i is the point corresponding to
the ith line. It is assumed that the coordinates of the

twelve points are read into double precision arrays x(i),
y(i), z(i), i = 1, ..., 12, so that x(i), y(i), z(i) contain the
x-, y-, z-coordinates, respectively, of point i.

–13.729277089 14.530621914 97.981467003
38.000000000 7.049967880 –92.123710427
41.736468803 68.831641719 –59.331882431
85.557213025 –49.840807038 –13.994897166
33.675274550 –77.937397763 52.741164465
1.724283838 –53.594476834 –84.424190762

15.161728368 3.186043237 98.792566086
0.082570927 –30.956721161 –95.085758310
47.541325082 –77.446759923 –41.735139045

–33.285508962 –14.545102894 93.175307798
–2.277195916 –58.886394970 80.791131020
70.061142979 9.068097315 –70.800333278

Given l equal to 8, through the two-integer decompo-
sition process, the numbers above are rounded off at the
lth = 8th digit of their decimal fractions and saved in
x(i), y(i), z(i), i = 1, ..., 12, so that then they appear as
follows.

–13.729277090 14.530621910 97.981467000
38.000000000 7.049967880 –92.123710430
41.736468800 68.831641720 –59.331882430
85.557213020 –49.840807040 –13.994897170
33.675274550 –77.937397760 52.741164460
1.724283840 –53.594476830 –84.424190760

15.161728370 3.186043240 98.792566090
0.082570930 –30.956721160 –95.085758310

47.541325080 –77.446759920 –41.735139040
–33.285508960 –14.545102890 93.175307800
–2.277195920 –58.886394970 80.791131020
70.061142980 9.068097310 –70.800333280

Each rounded off coordinate is also decomposed into
two integers. Twelve lines follow, each line containing
six integers. For each i, i = 1, ..., 12, the first two inte-
gers in the ith line are the two integers into which the x-
coordinate of point i is decomposed. Similarly the next
two integers correspond to the y-coordinate, and the
last two to the z-coordinate. The two-integer decompo-
sitions of the twelve points are then saved into ix(i),
ix2(i), iy(i), iy2(i), iz(i), iz2(i), i = 1, ..., 12, in the obvi-
ous manner. It is noted that when mfull = 230 =
1073741824 appears as the second integer correspon-
ding to a coordinate it is to be interpreted as a zero.

–13 –72927709 14 53062191 97 98146700
38 1073741824 704996788 0 –92 –12371043
41 73646880 68 83164172 –59 –33188243

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

86

85 55721302 –49 –84080704 –13 –99489717
33 67527455 –77 –93739776 52 74116446

172428384 0 –53 –59447683 –84 –42419076
15 16172837 318604324 0 98 79256609

8257093 0 –30 –95672116 –95 –8575831
47 54132508 –77 –44675992 –41 –73513904

–33 –28550896 –14 –54510289 93 17530780
–227719592 0 –58 –88639497 80 79113102

70 6114298 906809731 0 –70 –80033328

Given l as above equal to 8 and setting isclu to 10l =
108, by calling subroutine decomp the polynomial
decomposition of isclu is found to be isgcl, isclp(1),
isclp(2), with isgcl equal to 1, isclp(1) equal to 24832
and isclp(2) equal to 3051 (108 = 24832 + 3051 · mhalf
= 24832 + 3051 · 215).

As an example of how exact computations are car-
ried out that reference coordinates of the input points
given above, the computation that is the product of the
x-coordinate of point 2 and the y-coordinate of point 4
minus the product of the y-coordinate of point 2 and the
x-coordinate of point 4 is described. Using rounded-off
numbers the result of the computation should equal
x(2) · y(4) – y(2) · x(4), i. e.,

(38.000000000) · (–49.840807040) – (7.049967880) · (85.557213020).

On the other hand, if exact computations are required
then each of the four numbers involved must first be
converted into an integer which is the number times 108

rounded off at the decimal point. Since the resulting
integer may be too big to be saved into a 32 bit integer
word, its polynomial decomposition in the form of two
or more 32 bit integer words is obtained instead. Thus,
for example, the polynomial decomposition of the inte-
ger which is the x-coordinate of point 4 times 108

rounded off at the decimal point can be obtained by
calling subroutine decmp2 using the two-integer
decomposition of the coordinate, i.e. the integers 85
and 55721302, and the polynomial decomposition of
108 as obtained above. The resulting polynomial
decomposition is then found to be isgox4, ikox4,
iox4(k), k = 1, ..., ikox4, with isgox4 equal to 1, ikox4
equal to 3, iox4(k), k = 1, 2, 3, equal to 29270, 31723,
and 7 (the integer which is the x-coordinate of point 4
times 108 rounded off at the decimal point equals
29270 + 31723 · (215) + 7 · (215)2). In the same manner
the polynomial decompositions associated with the x-,
y-coordinates of point 2, and the y-coordinate of point
4 are found to be, respectively, isgox2, ikox2, iox2(k),
k = 1, ..., ikox2, isgoy2, ikoy2, ioy2(k), k = 1, ..., ikoy2,
isgoy4, ikoy4, ioy4(k), k = 1, ..., ikoy4, with isgox2

equal to 1, ikox2 equal to 3, iox2(k), k = 1, 2, 3, equal
to 26112, 17662, 3, isgoy2 equal to 1, ikoy2 equal to 2,
ioy2(k), k = 1, 2, equal to 26036, 21514, isgoy4 equal to
–1, ikoy4 equal to 3, ioy4(k), k = 1, 2, 3, equal to 2368,
21030, 4. Finally, using these polynomial decomposi-
tions as input the desired result is obtained by calling
subroutines mulmul and muldif as follows. Here nkmax
is the dimension of all of the arrays (input and output).

call mulmul(iox2,ioy4,iu,isgox2,isgoy4,isgu,ikox2,ikoy4,iku,nkmax,mhalf)
call mulmul(ioy2,iox4,iv,isgoy2,isgox4,isgv,ikoy2,ikox4,ikv,nkmax,mhalf)
call muldif(iu,iv,io,isgu,isgv,isgo,iku,ikv,iko,nkmax,mhalf)

The polynomial decomposition of an integer that
approximates the desired result times (108)2 rounded off
at the decimal point is then found to be isgo, iko, io(k),
k = 1, ..., iko, with isgo equal to –1, iko equal to 5, io(k),
k = 1, ..., 5, equal to 21112, 15183, 31880, 21597, 21.
The desired result is then approximately equal to this
integer, i.e. 21112 + 15183 · (215) + 31880 · (215)2 +
21597 · (215)3 + 21 · (215)4, divided by (108)2. By calling
subroutine doubnm the integer can be approximated by
a double precision number which when divided by
(108)2 is approximately –2497.1262712133, an approx-
imation of the desired result.

Finally, an example is given for the purpose of
describing the process of locating a point relative to a
plane that contains three other points. Here the point
whose location is desired is point 12 as given above,
and the three other points are point 1, point 2, point 8
also as given above. With t as the triangle with vertices
point 1, point 2, point 8, and H as the plane that con-
tains t, H+ is taken to be the open half-space defined by
H for which point 1, point 2, point 8 appear in a coun-
terclockwise direction around the boundary of t when
looking at t from H+. H– is taken to be the other half-
space defined by H. With ifir set to 1, isec set to 2, ithi
set to 8, ifou set to 12, which of H, H+, H– contains point
12 can be determined by calling subroutine crsinn as
follows.

call crsinn(ix, iy, iz, ix2, iy2, iz2, ifir, isec, ithi, ifou,
* mhalf, mfull, isclp, io, isgo, iko, iox, isgox,
* ikox, ioy, isgoy, ikoy, ioz, isgoz, ikoz)

On output isgo equals –1 so that point 12 must be in H–.
In addition iko equals 7, io(k), k = 1, ..., 7, equals
21844, 27853, 3870, 5372, 13630, 9887, 213, isgox
equals –1, ikox equals 5, iox(k), k = 1, ..., 5, equals
11868, 15341, 2677, 15631, 62, isgoy equals 1, ikoy
equals 5, ioy(k), k = 1, ..., 5, equals 11577, 8756, 364,
27887, 63, isgoz equals –1, ikoz equals 5, ioz(k), k = 1,

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

87

..., 5, equals 5921, 23919, 26934, 16812, 19. By calling
subroutine doubnm the integer whose polynomial
decomposition is isgo, iko, io(k), k = 1, ..., iko, can be
approximated by a double precision number dnum.
Similarly, the three integers, say ix, iy, iz, whose poly-
nomial decompositions are isgox, ikox, iox(k), k = 1, ...,
ikox, isgoy, ikoy, ioy(k), k = 1, ..., ikoy, isgoz, ikoz,
ioz(k), k = 1, ..., ikoz, can be approximated, respective-
ly, by double precision numbers xnum, ynum, znum.
The vector (ix, iy, iz), which is perpendicular to the
plane H and points into H+, can then be approximated
by the vector (xnum, ynum, znum). Finally, by dividing
dnum by both the length of the vector (xnum, ynum,
znum) and 108 the number –25.047402554921 is
approximately obtained, an approximation of the
signed perpendicular distance from point 12 to plane H,
the negative sign indicating that point 12 is in H–.

8. Summary

A scheme has been presented and software has been
documented for transforming into a series of integers
input decimal numbers that have been read into a com-
puter as double precision floating point numbers and
for carrying out multiplication, addition and subtraction
operations based on these numbers using their integer
representations. The total number of significant digits
of each input number must not be greater than 14, and
the number of digits to the left of the decimal point
must not exceed 9. Through a preprocessing step the
double precision floating point representation of each
input decimal number is rounded off at a prespecified
location of its decimal fraction, a location no more than
9 digits to the right of the decimal point, and the round-
ed off number is decomposed into two integers. All
operations that follow involving the input number are
then carried out in terms of the rounded off double pre-
cision floating point number and when this is not satis-
factory in terms of the two integers. This scheme has
been successfully incorporated into several computa-
tional geometry related programs such as REGTET [1].
Other programs that incorporate this scheme can be
found at http://math.nist.gov/~JBernal/JBernal_Sft.html.
Besides being used for locating a point relative to a
plane, in these programs the scheme has also been used
for locating a point relative to a sphere, for computing
the intersection of a line and a plane, for computing the
center of a sphere, etc.

9. References

[1] J. Bernal. REGTET: A Program for Computing Regular
Tetrahedralizations. NISTIR 6786 (2001).

[2] S. J. Fortune and C. J. van Wyk. Efficient exact arithmetic for
computational geometry, Proc. of the 9th Symp. on
Computational Geometry (1993) pp. 163-172.

[3] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient
exact integer arithmetic for computational geometry, ACM
Transactions on Graphics 15 (3), 223-248 (1996).

[4] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library
for robust numeric and geometric computation, Proc. of the 15th
Symp. on Computational Geometry pages (1999) pp. 351-359.

[5] K. Mehlhorn and S. Näher. LEDA: A platform for combinatorial
and geometric computing. Cambridge University Press,
Cambridge, UK (1999).

[6] C. K. Yap. Towards exact geometric computation, Computational
Geometry: Theory and Applications 7, 3-23 (1997).

[7] C. K. Yap and T. Dubé, The exact computation paradigm, in
Computing in Euclidean Geometry, World Scientific Press,
Singapore (1995) pp. 452-492.

About the authors: Javier Bernal is a mathematician
in the Mathematical and Computational Sciences
Division of the NIST Information Technology
Laboratory in Gaithersburg, MD. He received his
Ph.D. in Mathematics in 1980 from Catholic University
in Washington, DC in the same year he joined NIST.
His research interests include the development, analy-
sis and implementation of Computational Geometry
algorithms. Christoph Witzgall holds the designation of
Scientist Emeritus from the NIST Information
Technology Laboratory (ITL). Although he retired from
government service in 2003, he continues to serve as a
guest researcher in the ITL Mathematical and
Computational Sciences Division. Christoph has been
associated with NIST since 1962, serving as Acting
Chief of its Operations Research Division from 1979 to
1982. He received the Department of Commerce Silver
Medal for meritorious Federal service. The National
Institute of Standards and Technology is an agency of
the Technology Administration, U.S. Department of
Commerce.

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

88

