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Time-Domain Testing Strategies and Fault Diagnosis
for Analog Systems

HONG DAI anp T. MICHAEL SOUDERS, MEMBER, IEEE

Abstract—An efficient approach is presented for functional testing
and parameter estimation of analog circuits in the time domain. The
test equations are based on the sensitivity matrix, which can be ob-
tained simultaneously with the nominal solution vector. An example is
given, with results based on actual measurement data. Practical con-
siderations, including the effects of ambiguity groups, measurement
errors, and lime skew are covered. The approach can be directly ex-
tended to nonlinear circuits.

[. INTRODUCTION

HE OBIECTIVE of this paper is to present an effi-

cient approach for functional testing and fault diag-
nosis of analog circuits. To accommodate nonlinear ele-
ments more conveniently, the focus is on analysis and
testing performed in the time domain. Several authors
have discussed the diagnosability of dynamical circuits
theoretically [1]-[3]. In this work we address several
practical issues related to calibration, functional testing,
alignment, and fault diagnosis:

1) efficient parameter estimation, necessary for trim-
ming and alignment, and fault identification;

2) accurate response predictions for arbitrary input sig-
nals, important for calibration and functional test-
ing;

3) test point selection (test nodes and input signal lev-
els and waveforms), important in achieving ade-
quate test coverage with minimum cost.

The approach extends that presented in [4], [5] to in-
clude time-domain analysis, and can be directly extended
to include nonlinear systems. Two stages of computation,
pretest and post-test, are required. In the pretest stage, the
following tasks are performed: modeling the circuit under
test, simulating the time-domain response Lo one or more
specific input signals, creating a sensitivity matrix, and
performing test point selection and a testability analysis
on the sensitivity matrix.

During testing, reference time-domain input signals are
applied to the circuit under test using signal levels se-
lected in the pretest stage. A waveform recorder is used
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to record the input response(s) at the previously selected
test nodes.

In the post-test stage, the time-domain measurement
data are used together with the sensitivity matrix to esti-
mate the actual network parameters. Accurate predictions
of the circuit’s response to other arbitrary inputs can be
made by performing response simulations using the up-
dated p -ameter estimates. If the actual circuit parameters
are subsiantially different from the nominal values on
which the sensitivity matrix is based, then iteration in-
volving recalculating or updating the sensitivity matrix
will also be required in this stage.

II. GENERAL APPROACH
The general approach we have taken is to formulate the

test equations in the linear form
ap
S—=Av (1)
P

where § is the sensitivity matrix corresponding to a given
time-domain input signal, with

_ du,
= ap; o
p; is the nominal value of the jth parameter, Ap/p is the
normalized vector of deviations of the parameter values
from nominal, Aw is the vector of measured devistions
(from mominal) of the output, and n is a discrete time in-
dex. If there are m measurement nodes, then there will be
m equations of the form given by (1).

The true parameter values can be determined from time-
domain measurements of the output, by solving (1) for
Ap /p. When the number of discrete time points is greater
than the number of parameters, as is usually the case, (1)
can be solved using a least squares approach. On the other
hand, for greater efficiency, the number of measurements
can be reduced to the number of parameters, and an exact
solution can be obtained. In [5], a process for selecting a
nearly optimal subset of measurement points is presented,
based on a QR factorization of S.

A. Time-Domain Sensitivity Marrix

For simplicity, we use a linear network to illustrate the
procedure for obtaining the time-domain sensitivity ma-
trix. The procedure can be generalized to handle nonlin-
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ear neiworks. In the time domain, the system equations
of a linear network can be written as [6]

Cio+Gv=w (2)

where v is the voltage and current vector, & represents
dv /dt, G is the resistive element matrix, C is the reactive
element matrix, and w is the input vector.

The time interval (0, T') is divided into N + 1 discrete
points (0, #;, &, - * - , Ty ), where ty, = T. At each time
point, the solution of (2) is determined first, then the sen-
sitivity of the output with respect to all parameters,
dv /dp, can be obtained simultaneously with the solution
vector.

The initial conditign vy can be obtained by the dc so-
lution of the system. At an arbitrary time point t,, (2)
becomes

Cir, + Gv, = w,. (3)
To solve (3), we use the difference equations:
o, = (1/h)(v, - ©,_,), forn=1 (4.a)

i"n = [21}}:}(”# >
where

v, ) —#,_,, forn=2 (4.b)

h =1, -

(5)

To get higher accuracy and efficiency, differentiation for-
mulas with variable step size and order could be applied
to (3).
Substituting (4.a) and (4.b) into (3), respectively, we
get
[(1/m)C + G]uv,

= (lr‘iﬁ}{"ﬂn—l o L

s

forn = 1 (6.a)
[(2/R)C + G,
= [(2/h)C = Glo,_y + (Waui + W),
forn = 2. (6.b)

Once the matrices G and C are known from the nodal for-
mulation, (6.a) and (6.b) are applied directly.

In order to find sensitivities dv/dp, we differentiate
both sides of (3) with respect to p:

a”"+Ga—~':;+&C

‘% "% B

i, + v, = 0.

G
dp
Let us denote

G
s,,—aanduﬂ—- (ﬂpu"+ﬂpv')' (8)

Substituting (8) into (7), we have

Ci, + Gs, = u,.

(9)

By again applying the discrete-difference equations to (9),
we obtain the following, from which the sensitivity vec-
tors, 5., can be calculated:

[(1/R)C + G]s,
= (1/h)Cs,_, + u,,

forn =1 (10.a)
[(2/R)C + G]s,
= [(2/R)C — G5, + (8, + m,),
forn = 2. (10.b)

Note that the coefficient matrices of (6) and (10) are the
same. As a result, the factorized coefficient matrices from
the solution of (6) can be stored and used again to calcu-
late sensitivities s, in (10).

B. [lteration

To improve the accuracy of parameter estimation when
the linear model of (1) is inadequate, i.e., when the true
values deviate substantially from their nominal values, an
iterative process is implemented.
1) Solve the linear system §* Ap* /p* = Av* to obtain
Ap*/p*, where k stands for the kth iteration.

2) Update the sensitivit:r matrix to §; ., based on up-
dated p given by p**! = p*(1 + waAp*/p*), where
w is a weighting factor with 0 < w < 1.

3) Repeat 1) and 2) until Ap/p is less than a preset

bound.

[II. ProBLEMS AND PRACTICAL CONSIDERATIONS

A. Ambiguity Groups, Testability, and Test Point
Selection

In typical circuits, it is common for the column rank of
& in (1) to be less than the actual number of circuit param-
eters; this is due to the presence of ambiguity groups in
the circuit [7]. Ambiguity groups are groups of compo-
nents which cannot be distinguished from each other by
measurements made at the designated test nodes and test
conditions; consequently, their sensitivity vectors are lin-
carly dependent. Unless the ambiguity groups are elimi-
nated, the sensitivity matrix will be singular, and a solu-
tion to (1) cannot be found.

Even with numerically full rank, however, the matrix
may still be nearly singular due to near-ambiguity groups.
In these cases, the solution is unstable, and will be ex-
tremely sensitive to small errors in the model, as well as
to small errors in the measurement of Av. In other words,
the testability will be poor [5].

There are several ways in which ambiguity groups, or
near-ambiguity groups can be eliminated. The addition of
new test nodes or test conditions is often effective. In other
cases, it is possible to add additional components of
known value between test nodes during testing, making
measurements with and without the additional compo-
nents to increase the rank. Finally, if these approaches are
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not feasible or fail, it becomes necessary to reduce the
column dimensions of § to rank by artificially fixing the
value of all but one component from each ambiguity group
at their nominal values. This is accomplished using the
QR factorization approach described in [5], [7], and re-
sults in a column-reduced sensitivity matrix with full rank.
If we represent the column-reduced sensitivity matrix as
S, then (1) becomes

S.Ap. = Av (11)

where subscript sel represents the selected parameters. Of
course, the values of the selected parameters that are
members of ambiguity groups can only be estimated rel-
ative to the parameters that have been fixed in value.

In this latter approach, the level of ambiguity permitted
(and hence, the testability of the selected components) is
set by a factor €, provided by the user. By setting ¢ larger,
fewer components may be included in S, but the testabil-
ity of the selected components will be higher. Conse-
quently, response predictions made by substituting the es-
timated parameter values back into the original model may
be more accurate.

After the matrix has been column reduced, then the QR
factorization is repeat= on tie irunsposz of 5, w reduc-
the rows to rank, and thereby select 4 minimum set of
measurement times. This square row- and columm-re-
duced matrix, 8, is used to solve for Ap,,, from mea-
surements Awv, made at the selected time points:

Response predictions are made by solving for the pre-
dicted deviations, Aw,,.4, in the following equation:

ﬁﬂw = Srﬂpﬁui' [13]

B. Time Skew

In order to obtain accurate parameter estimates from the
approach outlined above, it is critical that the timing re-
lationship between the output and input data records be
accurately known. In cases where the output and input
waveforms are synchronously sampled, this may not be
particularly difficult if the external electrical delays are
kept equal. On the other hand, it is often convenient to
input a standard waveform, e.g., a step, which is known
to be nearly ideal, and then sample only the output wave-
form. In this case, only one recording channel is required,
but with asynchronous triggering, the timing may be in
error by as much as one half the sampling period. This
amount of timing error is often intolerable. For example,
it has been found in some cases that as little as 1 ns of
time skew can cause changes in parameter estimates on
the order of 50 percent. The problem can generally be
overcome, however, simply by adding a time skew pa-
rameter to the model. We accomplish this by adding an
additional component, A, to the parameter vector Ap/p,
and an additional column vector, s, to the sensitivity ma-
trix, §, where 5, = dw, /dr. The vector s,, is easily com-
puted by taking the first difference of the solution vector
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from (2), i.e., 5, = (v, 4+, — v,)/h. It has been verified
experimentally that this approach makes the parameter es-
timates relatively insensitive to the actual time skew.

IV. EXAMPLE

For an example circuit, a second-order bandpass filter
was used, the lumped element model of which is shown
in Fig. 1. The step response was simulated based on this
model. For greater simulation accuracy, we have used
variable size time steps in the numerical integration pro-
cedure. For the laboratory tests, a precision program-
mable step generator developed at NIST was used for the
stimulus waveform, and the step response was recorded
with a commercial equivalent-time sampling instrument.

The filter was designed to have a nominal center fre-
quency fo = wp/27 = 24.5kHz, again K = 2, and a
quality factor Q = 4. The design values of the elements
are given by

. e
R| = CWGK {]4.3]
20
R = 14.b
Y cw{-1 + [k - 1) + 807"} g
oofid
n=zzl% Rl e
Rq, - R:j, — H] {]4.(1)
Ci=C=C=S5r1F (14.¢)

It is apparent from (14) that, by changing the value of C,
other designs are possible that give identical responses.
The element values of the actual circuit, however, were
within 5 percent of the design values in (14).

The results of an ambiguity analysis of this filter circuit
are given in Table I, where the input signal is a step func-
tion. It is seen, as expected, that the rank or number of
observable components tends to increase as the number of
test nodes is increased. Nevertheless, the maximum rank
is five (two pairs of ambiguous components remain), even
though all test nodes are used. There is no way to distin-
guish between C, or C;, or between R, and R;, by solely
using voltage measurements. However, as shown in the
last column of Table I, it is possible to increase the rank
to seven (full rank) with as few as one test node, by mak-
ing additional measurements with known components
added to the circuit. In this case, two resistors, B, and R;,
having nominal values of 1 and 4 k2, respectively, were
added in succession. R, was added in parallel with C, be-
tween nodes 2 and common and R, was added in parallel
with R between nodes 4 and 5. New, perturbed sensitiv-
ity matrices, S, and S, are calculated by computing the
sensitivity of the new circuits with respect to the seven
original components. A composite sensitivity matrix, S,.,
is then formed by combining the original and perturbed
matrices so that S,,, = [S7S18]]17. Testability analysis
and test point selection can then be performed on §,,. In
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Fig. 1. Model for bandpass filter with center frequency of 24,5 kHz.
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this case, the testability analysis showed the circuit test-
ability to be significantly higher when using two rather
than one test node, while increasing the number of nodes
to four gave only marginally better testability. Results are
presented below using the original sensitivity matrix, §,
and then the composite matrix, S,...

As can be seen in Table I, only three components must
be identified in order to predict the complete output (node
5) response. Fig. 2 presents the results of a linear predic-
tion of the step response, based on actual voltage mea-
surements made at node 5, at three time points selected
by QR factorization. In this figure, the solid curve is the
measured step response, and the dashed curve (barely dis-
tinguishable because of coincidence with the solid curve)
is the response predicted by solving (13). In this case, the
design values, P;, were used for the calculation of the
sensitivity matrix, and the linear model was quite satis-
factory.

To determine the effectiveness of the proposed ap-
proach for cases in which the nominal values deviate sub-
stantially from the actual values, we recomputed the sen-
sitivity matrix based on the assumed wvalues shown in
Table II. In this case, the assumed values deviate from
the actual values by as much as 100 percent, and result in
the large step response differences shown in Fig. 3. Be-
cause of the large differences, the linear model is inade-
quate, as indicated by the poor prediction results shown
in Fig. 4. By applying the iterative procedure discussed
previously, however, excellent predictions can still be
made. Fig. 5 illustrates this, with the prediction results
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Fig. 2. Measured (solid) and predicted (dashed) step response of filter,
The predicted response was based on measurements at three time points,

using a single iteration with the sensitivity matrix computed from the
design values, P;.
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Fig. 3. Measured (solid) and computed (dashed) step response of filter.
Computed response was obtained from (6.a) and (6.b), where G and C
were calculated using the assumed values, Py, from Table 1.

TABLE 11
ParaMETER VaLUEs (KILOHMS, NANOFARADS)
Py Py (Pa-P) /Py Py
Component Deslgn Azzumed Percent Updated
Value Value Valus Value
By 5,18 5.5 & 4,815
c. 5.0 5.2 & 5.2
C, 5.0 5.2 & 5.2
By 1.0 1.5 =33 0,967
By 2.0 1.0 100 1.993
B, 4.0 4.0 0 4.0
By 4.0 4.0 0 4.0

obtained after four iterations. In this example, a weight-
ing factor, w, of 0.5 was used.

For linear circuits it is sufficient to know the step re-
sponse, for example, to predict the response to any other
input signal. However, for nonlinear circuits, this is not
generally the case, and it becomes necessary to determine
the full model parameters in order to make accurate re-
sponse predictions for arbitrary input signals. Therefore,
we are interested in the accuracy of parameter estimation
and the response predictions made from the original sys-
tem equations, updated with the new parameter estimates.
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Fig. 4. Measured (solid) and predicted (dashed) step response of filter.
Predicted response based on a single iteration, with the sensitivity matrix
computed from the assumed values, Py,
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Fig. 5. Same as Fig. 4, after four iterations, using updated values P,.

The results from such a prediction are given in Figs. 6
and 7. Fig. 6 shows an arbitrary input signal (solid) and
the measured filter response (dashed). In Fig. 7 we show
the measured filter response (solid) and the response pre-
dicted from the assumed model (dashed), which is based
on assumed values Py. Finally, Fig. B shows the predicted
response to the input signal of Fig. 6, computed from the
updated parameter estimates, P,, determined earlier from
step response data. The peak error in the prediction is less
than 2 percent.

The updated parameter values that were used for the
predicted response in Fig. 8 are given in Table II. These
are also the values that were used to obtain the response
prediction of Fig. 5. Note that the updated values of the
selected elements, R, R,, and R,, deviate significantly
from the design values. This is because these elements
form ambiguity groups with unselected components whose
values have been arbitrarily fixed at the assumed values
listed in Table II. Any error in the value of an unselected
component will be compensated by the computed devia-
tion for the selected component. Thus for example, the
filter response depends on @ = 20/w,K = R, C, rather
than on R, and C independently. For small deviations, the
net effect of time constant R, C; will be constant, inde-
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Fig. 6. Measured arbitrary input signal (solid) and the measured filter re-
sponse (dashed).
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Fig. 7. Measured filter response (solid) and the response computed from
(6.a) and (6.b) using the assumed model (dashed), for the arbitrary input
signal.
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Fig. 8. Measured (solid) and predicted response (dashed) to the input sig-
nal of Fig. 6. The predicted response is based on the updated parameter
estimates, P,, determined from step response data.

pendent of the exact choice of C,. In these cases, as in-
dicated in Fig. 8, the predicted responses will be accurate
even though the individual parameter estimates are not.
Results are given in Table III for the case in which ad-
ditional measurements were made on the circuit perturbed
by the addition of components R, and R, as described
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TABLE 1IN
PARAMETER WaLUES UsiNgG B, AND R, ( KILOHMS, NANOFARADS)

Fy By {Pa-Pp)/Bp By (Pg-Fu)/ Py
Compomnent Design Assumed Percent Updated Percent
Value Value  Change Value Change
Ry 5.18 5.0 1.6 5,138 0. 86
Cy 3.0 5.2 =3.9 5. 044 -0, 87
Gy 5,0 5.25 -4.8 5.08%9 =2.13
Ez 1.0 1.2 -17 1.008 -0,79
Ey 2.0 1.8 11 2.03% =1.91
E, 5.0 1.5 14 4033 -0.82
By .0 1.4 18 & 02% -0.72
5 -
— 1
Z
L
T
o
E / ‘\‘/\
[
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e \
=2 T T T
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TIME {us)

Fig. 9. Measured step response (solid), and step response predicted
(dashed) from measurements made on the original and perturbed cir-
cuits.

earlier. In this case, measurements were made at test
nodes 2 and 5, on both the original and perturbed circuits.
As seen in the fourth column, the assumed values ( Py) of
the components deviated by as much as 18 percent from
the design values. After eight iterations, the updated es-
timates (P, ) listed in column five were obtained. The up-
dated values deviate from the design values by only about
2 percent, which is within the design tolerances. In Fig.
9, the step response predicted using the updated values is
plotted. The solid curve is the measured step response,
and the dashed curve is the step response calculated using
(6.a) and (6.b), where matrices & and C have been recom-
puted based on the updated values.

V. CoNCLUSION

An efficient approach for parameter estimation and
time-domain response prediction of analog circuits has

been presented. The test equations, which can be gener-
alized to include nonlinear circuits, are based on the sen-
sitivity matrix which can be obtained simultaneously with
the nominal solution vector. An iterative parameter esti-
mation approach is used when the element values deviate
substantially from the nominal design values.

The effects of ambiguity groups were shown to be very
important for parameter estimation, and techniques for re-
ducing their number or algebraically accomodating them,
were presented. In particular, it was shown that additional
measurements made on a circuit perturbed by the insertion
of components of known value between critical test nodes
can break ambiguity groups. This approach could form an
attractive compromise between functional testing and tra-
ditional bed-of-nails, in-circuit testing.

Directions for future work include improvements in the
numerical integration and optimization routines, and ex-
tensions to accomodate mixed-signal devices and nonlin-
ear elements. With regard to nonlinear networks, methods
for selecting suitable test waveforms will also require fur-
ther study.
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Abstract

Tutorial material is presented to aid in measuring the
step response of waveform recorders, and to compute
other parameters which may be derived from ic.
Parameters considered include impulse response,
transition duration, sectling time, and complex
frequency response. The measurement approaches follow
those recommended in che IEEE "Trial Use Standard for
Digitizing Waveform Recorders.” Illustrated examples
are given, and guidelines on the choice of step
generators are also included.

I. INTRODUCTION

Some of the most revealing measures of a waveform
recorder’s dynamic performance can be computed from ics

step response, These not only include such Cime-domain
parameters as impulse responsc, transition duration
(clse time), seccling cime and overshoor, but alzo
frequency domain parameters such as bandwidch,

frequancy response (hoth amplitwde and phase), and gain
Brror.

Many of these performance parameters are defined in the
recently published 1EEE Standard 1037, "Trial Use
Standard for Wavelorm Recorders,”™ [1], and suitable
test methods for measuring the parameters are

In this paper,
supplementary information is given to help the user
correctly implement those tescs that are based en step
response, and practical illustrated examples are
included, Some guidelines on the choice of step
generators are also included.

recommended in the same document,

In one case, a suggested method is outlined which
differs from a corresponding one included in the IEEE
Standard. This method, a technique for extracting
equivalent-time sampling information, was developed
subsequent to the adoption of the Standard, and is

considered by the authors (of this paper) to be better
and easier to {mplement than the one outlined in that
document .

The use of step response measurcments to obtain
frequency response information continues to cause some
confusion for those not famillar with the technology.
This situation is reinforced by the prevalent use of
sine wave tests elsewhere in the Standard to obtain
information such as nonlinearicies. This seemingly
inmverted state of affairs arises from the nature of
waveform recorders and the economics of the
measurements. First of all, waveform recorders are
inherently time-domain instruments: time is always the
independent wvariable, Second, sine wawves are chosen
for linearity measurements as much because they are
easily generated and their purity is relatively easy to
control, as they are because of their singular
importance in the frequency domain. Third, obtaining
frequency responses with step signals is orders of
magnitude easier than obtaining them with sine waves.

199@ IEEE 214

II. EQUIVALENT-TIME TESTING

A common limitacion that is encountered when computing
step and frequency response parameters from sampled
step response data is the relacively small ratio of
sampling rate to bandwidch which is characteristic of
typical waveform recorders. Typical values (ranging
from two to four) produce coarse time quantization in
the time domain, and give rise to substantial aliasing
errors in cthe frequesncy domain if the input signal is
not band-limited. It would therefore be desirable to
effectively increase the sampling rate of the waveform
recorder when making these measurements. Such an
approach iz suggested in Srtandard 1057; a similar
mechod, considered better by the authors, is outlined
next.

The Concepr

If the input signal is repetitive, the sampling rate
limitations can be reduced by using cthe principle of
cquivalent Cime sampling to multiply the effective
sampling rate of the waveform recorder by an integer,
D. This is illuscrated in fig. 1 for D=4. By choosing
the repetition rate of the input step appropriately,
D=4 periods are recorded in a single record (bottom);
then, upon rearranging the samples (top) with a simple
algorithm, a single repetition is obtained which is
effectively sampled at D times the eriginal zampling
rate, In this example, the hypothetical waveform
recorder has & sinpgle pole transfer function and a
Note
If the

ratio of sampling rate to bandwidth of 3.14 (x).
that the rizing edge is sampled very coarsely.

frequency response were computed directly from cthis
Using

data, the aliasing errors would be quite large.

AMPLITUDE

AN

i1 lG

DATA SAMPLES

— 1

Fig. 1 Illuscration of equivalent-time sampling
approach. The bottom waveform shows the
real-time samples and the top waveform has
been reconstructed in equivalent-time from
the bottom waveform by rearranging the
samples as indicated.
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the bounds for aliasing errors given in section 4.7.2
of [1], the estimacion of bandwidth from such a
determination could be in error by as much as 40%.
However, using the reconstructed step response at the
top, the errors would be reduced to 2.5%.

The following BASIC program implements the algorithm to
rearrange the samplesz in equivalent time:

40 € =C +
50 I2 = I + (J-1)*L
60 E(C) = R(IZ)

70 REXT J
B0 NEXT I
Where D (integer) sampling rate multiplier
H racord length
L INT(M/D) and INT{*) designates the
integer parc of *
E(*) array containing equivalent-time samples
c equivalent-time sampling index
R{*}) array containing real-time samples
12 real-cime sampling index

The numbers adjacent to the equivalent-time samples in
the top ploc of fig. 1 indicate the corresponding
sequence of real-time samples from the bottom plot.

Selection of Parameters

The selection of paramecers required is straight
forward. First, integer D is chozen based on the
required equivalenc sampling rate, f,,, such that

faq = DE., where f. is rhe (real-time) sampling rntn.uf
the waveform recorder. Next, L, the number of real-time
samples taken during each repetition of the step, is
given by INT{M/D), i.e., the integer value of M/D,
where M iz the number of samples in a record. Finally,
the step generator’s repetition rate, f., is eet such
that

(i]

£, - £ IxD = H {1}

LxD-1

For the example of fig. 1, D =4, L =53, and £, -
0.2105263 f.. HNeote that data points between M and

D*INT(M/D)} are not usable. (Since this equivalenc-cime
test method differs from that in Standard 1057, Eg. 1
differs from the corresponding equation in section
4.1.5.1 of that standard.)

Accuracy Requirements

This method of achieving higher equivalent sampling
rates requires that the repetition racte, f,., of the
itep generator be precisely controlled. While the
iverage equivalenc-time sampling rate is just Dxf_,
independent of f., the relative spacing of the
iquivalent-time samples becomes non-uniform when £
leviates from the value given by Eq. 1. If f, is too
sreat, D-1 out of D successive samples will occur teo
ate wvhile one sample will be correctly placed; if f.
8 too small, D-1 samples will occur too scon. Im
ither case, the maximum sampling time error is giwven,
© a good approximatiom, by

At Aty
= M(D-1) — (2)

teq e

where ag the average equivalent-time sampling
peried, i.e., 1/Dfg

.1 the maximum sampling time offset

&crﬁtr proporcional error in the repecition
period {(or repetition rate)

Hote, however, that the errors are mot cumulative; the
average equivalent sampling peried iz =crill given by
1/Df,.

0f course, the assumption is made in Eq. 2 that £, is
exactly known; Lf it is not, then additional error
given by an expression similar to Eq. 2, will acecrue.
As an example, if D is four, the record lenmgth is 1024,
and the equivalent sampling period iz to be known teo
5%, then the repetition rate must be set, and the
sampling rate must be known, each with an accuracy of
0.05/(1024*3) = 16 ppm. Te achieve such accuracies, it
iz usually necessary te trigger the step generator with
an excernal, frequency synthesized source, It may
sometimes be necessary to measure the frequency of the
step as well as the waveform recorder's clock frequency
with an accurate frequency counter to assure that they
are set with sufficient accuracy.

Tradeoff Between Accuracy and Spectral Resolution

If sufficient accuracy cannot be achieved for a given
record length, the accuracy can be improved directly by
decressing the length of record used. However, since

the lowest frequency component that is represented in a
record of lengch M is given by f. /M, chis limics che
range of frequencies that can be represented when the
f:l'l."'l.l'.1l=".!i.':;|' response s -:'nmpul!{'n:!_

IIT. COMPUTATION OF FREQUENCY RESPONSE

As recommended in Standard 1057, two basic steps are
required in the computation of frequency response from
the step response data. First, the step response data
is numerically differentiated to obtain the dizcrece
impulse response, This is performed with the following
equal ions:

Ip = (Sp4l - Sn) / teq. l =m<H {3a)
In = (In-1} / tag: n=HM {3b)

where I, nth Impulse response sample
5n nth step response sample
Leq the equivalent-time sampling period

Next, the Fourier transform of the diszcrete {mpulse
response iz taken to obtain the frequency response. If
the impulse response does not begin very mear the starc
of the record, it is first advisable te delete a
portion of the record zo that the impulse does begin
near the start; otherwise, a large linear phase term
will result in the subsequent phase plot.

Example

Figs. 2-9 illustrate, with laboratory results taken on
a commercial waveform recorder, the entire sequence of
operations required to obtain the complex frequency
response: obtaining step response data, rearranging the
data to cbtain equivalent-time samples, computing the
impulse response, computing the frequency response, and
plotting the magnitude and phase spectra in different
formats.

In fig. 2, the raw step response data from the waveform
recorder is plotted., In this example, D=4, M=5095,
L-1023, £.~60 MHz, and £;~58.66536 kHz. The input step
is approximately * 0.9 V, from a fast-settling

b
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Fig. 2 Pata from a 10-bit waveform recorder with a
repatitive input step. The repetition rate
has been chosen te give an equivalent
sampling rate of Ffour times the actual rate,
after rearranging the samples
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Fig. ¢ The portion of data from fip. 3 selected for

the impulse response computation.

gencrator developed at NIST [2]. (The gemerator is
designed to give the rated performance for only a
selected transicion polarity; in this case the positive
cransition was selected, and only data from that
transicion is subsequently used.)

The data plotted in fig. 3 has been rearranged using

the algorithm given previously; note the increase in
the effeccive sampling rate. In fig. 4 is plotted a
subset of the data that has been selected for
subsequent processing. Much of the initial, pre-step
waveform has been deleted as well as the negative
transicion, (Delecion of the negative transitiom is
mandatory, because only a single step must be used.)

A time-expanded plot of the impulse response, computed
from Eq. 3, is given in fig. 5. The occurrence of
substantial noise on the computed impulse response is
typical because differentiation accentuates moise.
However, the spectral components of the noise are
typleally quite high and cause little preblem in the
frequency range of most Iinterest, i.e., below the
cutoff frequency. If the noise must be reduced, the
digital filter desecribed in [1] and [3] is quite
effective.
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Fig. 3 The data from fig. Z after rearranging the
samples as specified in the cexc.
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Fig. 5 A time expanded plot of the discrete impulse

response computed from the daca plotted in
fig. 4.

Fig. & gives the resulting magnitude spectrum obtained
by performing an FFT on the impulse response data. The
spectral lines have been normalized to the amplitude of
the first (non-dc) line. The waveform recorder’s gain
flatness versus frequency is more readily apparent in
fig. 7, vhere the deviations from the first spectral
line are plotted on a split log-log scale.

The raw phase information obtained from the FFT of the
impulse response is plotted in fig. 8. As with most
FFT routines, the phase information is presented modulo
x, i.e., only the remainder after dividing by » is
given. To obtain the true, cumulative phase plot, a
short program is written te add 180* following each
180* discontinuity. HNoise will usually impose a limic
on how high in frequency such an approach can be
effective. Ewentually, when the frequency components
are sufficiently small, the noize will cause additional
discontinuities large enough to fool the unraveling
algorithm. In additiom to the unraveling process, the
residual linear-phase term, caused by an arbitrary
time shift of the impulse response with respect to the
start of the record, should be removed to accentuate
the nonlinear phase response, This is accomplished by
rotating the phase plot about its origin, so that it
passes through some nominal, expected value at a given




frequency. As an example, most waveform recorders
exhibit a dominant pele which determines the bandwidth
or cutoff frequency; at this frequency, the phase angle
should nominally be -45°. Therefore, it is sometimes
convenient to rotate the phase plot so that it passes
through -45° at the cutoff frequency. Fig. 9 shows the
results of unraveling and removing the linear phase
term from the raw phase daca of fig. 8,
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discrere impulse response, a portion of which
iz showne in Lip. 5.
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Fig. 7 The gain flatness computed as the deviation

of the magnitude spectrum from the first
spectral line.

IV. SETTLING FERFORHANCE

The following four figures [llustrate the measurement
of settling time, short-term settling time, and leng
term settling error using the definitions and
procedures as recommended in Standard 1057. The
figures represent the settling performance of a 10-bit
waveform recorder with an input step wvhose baseline and
topline were 5 and 95 percent of full-scala,
respectively, giving a step amplitude of 90% of full-
scale. Two records were taken of 4095 points each, at
respective sampling rates of 30 and 1 MHz, giving
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Fig. & Raw phase data (module =)} frem the FFT of the
impulse response.
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Phase spectrum after unraveling raw phase
data and removing the unwanted linear phase
component

Fig. 9

respective time epochs of 0.1365 and 4.095 ms. It can
be seen that the recorder exhibits both shert and long
term settling responses, appearing to have settled
within the time epoch of fig. 10, but showing
subsequent longer term settling behavior over the
longer epoch represented in fig. 11. In other records
extending out to 1 s, no significant addicienal
settling was observed. In fig. 10, the horizontal
dashed linesz represent an error band of * 0.56% of the
input step amplitude (5 LSB's) about the final value of
the record, and the vertical dashed line represents the
point at which the waveform last enters the error band.
The short-term settling time is the duration from the
proximal point of the transictionm (occurrinmg at the
256th sample) to the time represented by the vertical
dashed line; this duration iz (422-256) sample periods
or 5.53 ps in this example. The long-term settling
error is the difference between the final wvalue
measured at 1 5 (represented by the solid horizontal
line), and the final value in this record. In this
example, the long-term settling error is 7 LSE's or
0.78% of the input step amplitude.

In fig. 11, the final value essentially coincides with
the value at 1 5, and the horizontal dashed lines thus
designate the error band for settling time as opposed
to short-term settling time,
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Fig. 10 Shorc-cerm settling performance of a 10-birc,
30 HHz recorder. The input step begins at
the first sample division (256th sample).
The short-term settling te 5 LSE's iz shown
with the dashed lines £o occur at the 422nd
sample, giving a short-term settling time of
5.3 gz, The leng-term zettling error is
shown as the deviation of the final value in
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10 to reduce
The error

prefiltering the data of fig.
noise and quantization errors.
band shown is + 2 LSB.

Note that noise and quantization errors limit the
measurement of settling performance. To some extent,
these limitations can be overcome by digitally pre-
filtering the data before determining the settling
performance. Examples in which a moving average filter
has been used are given In figs. 12 and 13. These
correspond to those of figs. 10 and 11, but with
cighter error bounds (* 2 LSB'z). MNote that the use of
filtering in settling time measurements is NOT
addressed in the Standard, and that isproper use of
filtering can dramatically alter the apparent settling
performance, as well as minimize noise and
quantizacion errors.
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prefiltering the data of fig. 11 to reduce
noise and quantizarion errors. The error
band shown Is + 2 158,

V. CHOOSING A STEF GENERATOR, AND ANALYSIS OF ERBORS

& number of criteria should be kept in mind when
selecting a step generator te perform the measurements
discussed above. These include the generator's
transition duration, settling performance, time jitcer,
and programmability, as well as its output impedance
and means for connection te the recorder under test.
These are each addressed in the following sections.

Transition Duration

As a rule-of-thumb, the transition duration of two
linear systems in cascade is the root-sum-of-squares of
the individual transition durations., This rule is
exact if the step response is monotonic and the
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transition duration iz defined as the 10-90 percent
transicion duration of a Gaussian system wicth the =same
digpersion [4]. If transitionm duration iz defined
conventionally as in IEEE Scandard 194 on pulse terms
and definitions [5], then the rule is only an
approximation; nevertheless, for many systems of
interest, it gives reasonable results.

According to Standard 1057, the step generator should
have a transition duration no greater that one fourth
that expected of the waveform recorder under test,
Using the-rule-of-thusb, this bound represents an error
contribution to the measurement of transitiom duration
T, of approximately {[T3+(T/4)%]? - TJ/T = 3%. The
same rule-of-thumb can be used to estimate the error
wvhich results if a slower step generator is used.

Setcling Time

The settling time definition of Standard 10537 uses two
paramecers, an error band, ¢, and a settling time, .
By that definition, a waveform recorder satisfies the
settling time conditions [¢.t] if ics scep response
remains within * ¢ of its fimal value for all cime
lacer than t. The settling performance of the inpuc
step of course affects the measured settling time of
the waveform recorder. As a rule-of-thumb, if [e,c] is
the sectling vime requirement to be demonstrated from

the waveform recorder, then the input step used for
testing should sipultaneously satisfy the two settling
time requircments. [¢,c/k] and [e/k.£]. to achiewe an
accuracy of 1/k in the determination of . In the IEEE
Standard, it is recomsended that k be four or greater
This rule is demonstrably sufficient for one and two
pole systems; it should also provide a resonable bound
for ather, move complex responses.

Time Jitter and ".'E:l.ing Accuracy

The time-domain effects of errors in setting the
repetition rate vere outlined in a previous zection on
equivalent-time testing. In the [requency domain, the
resulting nonuniform sampling causes errors in the
computed [requency response While a general
formulation of the spectra of nonuniformly sampled
signals has been derived in [6], the examples given in
that paper have only been worked out for sinusoidal
inputs. We can put the problem into perspective by
considering the case in which the input is an ideal
srep, Che sample time errors are small, and the
vaveform recorder has an ideal, single pole response
with cuteff frequency f.,. Fig. l4 gives the errers in
the magnitude spectrum resulting from sampling time
errors for the following sampling conditions: the
sampling rate mulctiplier (D) is 5, the record length
(M) is 4096, the error in repecition rate (f.) i=

25 ppm, and the ratio of sampling rate to bandwidth
(Ec/f-5) is 2.5, The plot in this figure can serve as
a puideline for estimating frequency response errors
due to errors in setting the repetition rate, f.. For
errors in the sampling times (Atgg,/t.,) that are less
than 100% (see¢ Eq. 2), the errors in %rcqunncy response
scale directly with sampling time errors; likewise, the
errors scale directly with record length, H. As the
racio fo/f., increases, the spectral error peaks shift
to higher frequencies wich respect to f., without
changing appreciably in magnitude. Changes in D (over
the range of 2 to 12) cause the peak error te change by
+ 50% from the value at D=5.

Timing jitter causes randomly distributed displacement
of the sampling times, which in turn causesz equivalent
amplitude noise in the sampled step response signal
proportional (to first order) to the derivative of the
step response. In the frequency domain, afrer
differentiacing and taking the Fourier transform, the
net effect is a neise spectrum with most of the energy
concentrated above the cutoff frequency.
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Fig. 14 Plot of the spectral magnitude errors,
resulting from a 25 ppm error in setting step
repetition rate. In this example, the ratio
of f, to £. is 2.5, D=5, and H=4096.
Programmabilicy
The previous sections make it clear that the step
penerator’s repetlicion rate most be setable to odd
values with high accuracies in order te insure

accurate equivalent-time timing accuracy It is also
desirable to have the amplitude and step polarity be
variable as well. This is useful in matching the scep
amplitude to multiple inpur ranges of the recorder
under tesc, and to check the assumption of limearity
that is made when computing frequency response from

step response data., As an alternative, different
amplitudes can be obtained with external, high qualicy
attenuators. In either case, it Is insctruccive to
record the step response at two or more amplitudes, and
compare the frequency responses computed from each. If
the recorder is linear, then the two plots will be
identical, within the noise limits of the preocess. If
the recorder is monlinear, then the plots will diverge
at some frequency.

Transmizzfon Line Considerations

For best results, the step generater should be
terminated through a matched cable in its
characteriscic impedance, preferably with the inpuc
impedance of the recorder itself, and the generator
should be connected to the recorder through the
shortest length of cable practicable. Taking these
steps will minimize distortion of the step due to
reflections and dispersion.

The important thing to remember when considering the
losses due to cables is that the transicion and
settling times for skin effect limited coaxial cables
are proportional to the square of the length of cable
[6.7]. When passing a unit step through a skin effect
limited coaxial cable the output is l-e{t), where the
error, e{t), is given by 3

e(t) =C £ ¢ (4)

vhere £ is the length in feet, € iz the time in
nanoseconds and C is a constant depending on the
particular type of cable. This formula is walid for t
large emough that e{t)=0.5, and is derived by



approximating the step response formula given in [7].
The value of C for RG-58 cable is 0.0058. Table I
glves the errors computed from Eq. 4 for several times
and three lengths of cable . HNote that the error dies
out very slowly and therefore iz quite serious in
measurements of sectling performance.

VI. CONCLUSION

The measurement approaches and suggestions given in
this paper are intended to be used in conjunction with
the IEEE Trial Use Standard for Digicizing Waveform
Recorders. That document includes definitions, test
methods and conditions of test which have been taeicly
assumed in this paper. A particularly important point
to keep in mind is that aliasing errors will always be
present when sampling step response with a finite
sampling rate, and formulae for computing bounds on

those errors are included in the Standard.

The authors hope that the examples and suggestions
presented here will take some of the mystery out of
step response testing and deriving time- and
frequency-domain information from those tests. Any
difficulties in implementing these tests, or
supgestions for improvements, should be direcred te the
authers or the Waveform Measurements and Analysis
Commiccee of the IEEE Instrumentation and Measurement
Sociecy which developed the Standard.
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Table I

| RESPONSE ERROR DUE TO CABLE LOSS (RG-58) |

l Time (ns) Exror (%) r

1/10 fc 1 fx 10 fc

1 0,058 0.58 5.8

2 0,041 0.41 4.1

5 0.026 0.26 2.6

10 0._018 0.18 1.8

20 0.013 0.13 1.3

50 0.008 0.08 0.8

100 0.006 0.06 0.6




