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Developing Linear Error Models for Analog Devices
Gerard N. Stenbakken, Member, IEEE, and T. Michael Souders, Senior Member, IEEE

Abstract-Techniques are presented for developing linear error
models for analog and mixed-signal devices. A simulation pro-
gram developed to understand the modeling process is described,
and results of simulations are presented. Methods for optimizing
the size of empirical error models based on simulated error
analyses are included. Once established, the models can be used
in a comprehensive approach for optimizing the testing of the
subject devices. Models are develop.ed using data from a group of
i3-bit AID converters and compared with the simulation results.

I. INTRODUcnON

TESTING of analog and mixed-signal devices is a very
critical element in the design cycle of many new products.

Test engineers must develop tests for these devices which
can accurately sort the good devices from the not so good,
with a minimum of cost and time. The process of developing
an efficient test plan always involves a tradeoff of the test
confidence versus the test cost. This process requires getting
the maximum information possible from the tests that are
performed.

Over the past several years, a comprehensive approach
has been developed at NIST for maximizing the tradeoffs
associated with production testing of analog and mixed-signal
devices [1]-[4]. The approach is based on a simple relation
between device errors measured at a small number of test
points and device errors at a large number of test points that
are predicted from those measurements. The simple relation is
based on a linear coefficient matrix model.

One point that is emphasized in this paper is a technique
for optimizing the resultant model. When an empirical model
is being developed, a criterion is needed to determine the
optimum number of model parameters. Simulations of error
modeling show that if too few parameters are used in the
model, then some of the true error structure cannot be de-
scribed. On the other hand, every parameter added to the model
increases the amount of measurement.noise that is modeled as
device error. Thus, there is an optimum number of parameters .

that should be used to estimate the errors of a device. This

paper describes how to select a stopping criterion for empirical
models that will minimize the rms difference between the
predicted device error and the true device error.

Once an accurate model has been developed, algebraic
operations on the model can be used to:

I) select an optimum set of test points which will minimize
the test effort and maximize the test confidence,
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2) estimate the parameters of the model (i.e., the error
variables) from measurements made at the selected test
points.

3) predict the response of the device at all candidate test
points from measurements made at the selected test
points, and

4) calculate the accuracy of the parameter estimates and
response predictions, based on the random error in the
measurement.

The purpose of this paper is to describe the procedures used
to develop empirical models. Two methods are described:
QR decomposition (QRD) and singular-value decomposition
(SVD). A program that uses these methods to simulate a
device production line is described, and results are presented.
These modeling techniques are applied to data from 13-bit
AID converters and the results compared with the simulation
results.

II. QR DECOMPOSITION MODEL BUILDING

Consider the problem of designing a test for a device which
has error limits set at m test points. Make error measurements
at all m test points and collect the errors into a vector called
y. Thus, y is an m-by-I vector of measured error values.
Assume that the errors are related to the process parameters
Xl, x2, . . . ,xP of the production line by a linear error model
A, and the measurements of the device are subject to an error
of €. Then the measurements on a device can be expressed as

y=Ax+€ (I)

where A is an m-by-p matrix, x is a p-dimension vector, and
€ is an m-dimension random vector with normally distributed
elements with a mean of 0 and standard deviation of u. In
general the dimension of the test space m is much larger than
the dimension of the parameter space p.

To build an empirical model take n devices from the
production line and ineasure their errors. Let Y be the matrix
of these n vectors, i.e.,

Y = (yl,y2,... ,yn). (2)

Use the QRD algorithm to decompose the Y.matriX: into
two matrices. The QRD process sequentially selects or pivots
the largest error vector yi and orthogonalizes the remaining
vectors to it. Denote the QRD of Y as

PY = QR (3)
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where P is the pivot matrix, Q is an orthonormal m-by-
m matrix, and R is an m-by-n right"triangular matrix. The
pivot matrix P reorders the columns of Y (the device order)
such that the diagonal of R is monotonically decreasing. This
pivoting puts these columns in approximately their order of
importance. The first k columns of Q (orthogonalized vectors
of Y) can be used to estimate the space spanned by the linear
error model A. To select models of various sizes, the vectors
of Q are selected in order until the desired sizes are obtained.
If Qk denotes the first k columns of Q,

1i ~ Qkzi + Ei

where the elements of z do not correspond one-for-one with
the x's, but the column vectors of Qk span approximately the
same space as A. The simulation results described below show
how to select an optimal value for k.

III. SINGULAR- VALUE DECOMPOSmON MODEL BUILDING

The other method that can be used to build an empirical
model is singular-villue decomposition (SVD). Use the SVD
algorithm to decompose the Y matrix into three matrices.
The SVD process selects those linear combinations of error
vectors y which are best able to describe the variation in Y
and orthogonalizes them. Denote the SVD of Y as

Y =USyT

where U is orthogonal m by m, S is diagonal m by n with
min (m, n) monotonically decreasing singular values, and Y
is orthogonal n by n. The first k columns of U (orthogonalized
linear combinations of vectors of Y) can be used to estimate
A. The SVD process. puts these columns in their order of
importance. To select models of various sizes, the vectors of
U are selected in order until the desired size is obtained. If
Uk denotes the first k columns of U, then

yi ~ U kzi + Ei

where again the elements of z do not correspond one-for-one
with the x's, but the column vectors of Uk span approximately
the same space as A. .

Given an empirical model Qk or Uk, a good set of test
points can be selected using QRD on the transpose of Qk
or Uk, thus selecting rows of the empirical models or test
points. Additional test points can be selected by calculating
the prediction variance and sequentially selecting the test point
corresponding to the maximum"prediction variation [3]. The
selected parts of Q", and U'" are denoted as Qk and if", and
the corresponding measurements for device i as ii. These
techniquesare more fullydescribedin [4].

IV. MODEL SIMULATION PROGRAM

A model simulation program was written to gain a better
understanding of the relationships between the various factors
involved in empirical modeling. This program simulates a

(4)

production line that can produce devices. The data from
simulated measurements on these devices can be used to study
the effects of various modeling factors on how well these
estimated models match the true model. Among the modeling
factors that can be studied with this program are the number
of model parameters, their size relative to the noise level,
the total number of test points, the number of selected test
points, and method of selecting test points. This program
was written in a programming language designed for linear
algebra called CLAM (TM).I Fig. 1 shows a block diagram
of the model simulation program. A brief description of the
program is given next, followed by a description of some of
the simulations run using the program.

The true model description is a set of parameters that gives
the characteristics of the true model. The simulations described
below used a true model with random vectors. This model
allows an arbitrary number of model vectors, an arbitrary
number of test points, and an arbitrary size of each vector.
The individual vectors are created from elements drawn from
a uniform distribution. For real production devices this step
in the simulation is equivalent to developing a processing line
that builds devices. The true model describes the amount and
type of process variations that result from this hypothetical
production line.

The program generates two sets of random vectors which
conform to the true model. This step in the program is
equivalent to producing a number of devices on the production
line and setting aside one group to build an empirical model
and another group to validate the model. Random noise is
added to the true model and validation sets to form the
noisy model and validation sets. This corresponds to the noise
introduced during the process of taking measurements on these
devices. Measurements from real devices can also be analyzed
with the simulation program. Data from real devices. shown
in Fig. 1 as a predefined set, can be split into the noisy model
and validation sets. In this case the true validation set (TVS)
is unknown, so some later analyses cannot be performed.

The empirical model is derived from the noisy model set
using either QRD or SVD analysis [5], [6]. Empirical models
with a varying number of parameters (e.g., k equal to the
range I to min (m, n) in (6) above) are used in the subsequent
analyses. For each empirical model a good subset of test
points is selected by minimizing the prediction variance [3] of
each submodel (shown as Select Test Points in Fig. I). These
selected test points represent the small number of test points
that"would be measured in a real production operation.

The simulated measured errors of the corresponding test
points of the noisy validation set are fitted to those of the
empirical submodel. The resultant fit parameters are referred
to as the Predicted Validation Parameter Set in Fig. I. Since
the number of selected test points is in general larger than
the number of model parameters, a least-squares approach
is needed to calculate these parameters. Thus the estimated

(5)

(6)

I Certain commercial software is identified in this paper in order to
adequately describe the program developed. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology nor does it imply that the software is necessarily the best available
for the purpose.
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Fig. 1. Block diagram of simulation program.

parameters can be computed as
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for the SVD models (use Qk in place of fj k for the QRD
models). Note that the estimated parameters zi are a function
of the selected test points and the number of vectors k used in
the model. The parameters are multiplied by the full empirical
model to generate the predicted validation set. This predicted
set is compared with the true validation set (TVS in Fig. I),
if available, and the noisy validation set (NVS) to determine
the adequacy of the modeling process.

V. SIMULATIONS

The simulations were used to address four questions about
empirical"modeling and testing. First, what is the optimum
number of empirical vectors to use in the model? In the past,
the number of vectors used in a model was determined by
examining the r~iagonal values from .the QRD [4] or the
singular values from the SVD. When the r~iagonal value
approached the level of the measurement noise, no additional
vectors were selected. This method gave good results but was
not optimal. The simulations, however, show another method
which appears to be optimal. Second, how does the reduced
number of test points affect the accuracy of the results and
the size of the optimum empirical model? Third, what are
the relative advantages of QRD versus SVD? QRD is roughly
three times faster than SVD, but how do the accuracies and
sizes of the model compare? Fourth, what are the effects of
the noise level on these results?
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TABLE I
PARAMETERS FOR SIMULATIONS

(7) Number of total tesl points = 128

Number of true model vectors =10

1Ype of true model vectors =random
Distribution of vector elements =zero mean. uniform

Size of true model vector elements.

4 with maximum amplitude of :1:0.50 and rms of 0.29
2 with maximum amplitude of :1:0.25 and rms of 0.14

2 with maximum amplitude of :1:0.10 and rms of 0.06

2 with maximum amplitude of :1:0.05 and rms of 0.03

Distribution of parameters =normal

rms of parameters = I

Standard deviation of resultant device vectors =0.62

The simulations suggest answers to these questions, and
give indications of where to look for analytical solutions. The
following simulation results are from runs with true model
vectors and p~eters as desmbed in Table I. In each case
130 random devices were used in the true model set, and the
same number were used in the validation set.

Fig. 2 shows the average difference between the predicted
error and the measured error for the validation set using models
derived with QRD and an nns noise level of 0.1 at each test
point. This noise level is about one sixth of the size of the
true model contribution at each point. Note from Table I that
this noise level is larger than the nns of the four smallest
true model vector elements (0.03 and 0.06 in Table I). The
horizontal axis of Fig. 2 is the number of vectors k used in
the empirical model, and the vertical axis is the nns error of all
test points for all devices. Results are plotted for five different
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Fig. 2. Rms difference between predicted values and measured values using
QRD derived models and an rms measurement noise of 0.1.

test point sets from 16 to a full set of 128 test points. The full
test point set gives the lowest difference for any model size
and goes to zero for a complete model of 128 model vectors.
This is to be expected since with 128 points to predict and a
full set of 128 parameters the measured data can be exactly
represented. Each of the reduced test point curves has a model
size that gives a nontrivial minimum difference.These minima,
all slightly above the noise level of 0.1, show the model size
which gives the closest prediction to the full set of measured
values.

The optimum model size, however, is the one which gives
the minimum rms difference between the predicted values
and the true values, rather than the measured values. The
results given in Fig. 3 are similar to those described above
but show the difference between the predicted errors and the
true errors for models derived using QRD. This difference
can be computed for simulated results but cannot be known
for real devices. For any model size, the full set of 128 test
points gives the smallest difference and for a complete model
of 128 model vectors goes to 0.1 which is the measurement
noise level added to the true values. All of these test point sets
have a model size that gives a minimum difference.,including
the full test point set. Comparing these results with those
of Fig. 2 shows that predicted values of the four reduced
test points sets are always closer to the true values than to
the measured values. The minimum difference for 32 test
points is at the measurement noise level of 0.1, and the
minima for 64 and 96 test points are lower than the noise
level. These error levels are below the measurement noise
level.
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Fig. 3. Rms difference between predicted values and true values using QRD
derived models and an rms measurement noise of 0.1.

Recall that the measurement noise level is the difference
between the measured values and the true values. This noise

level is the error obtained when all test points are measured and
no model is used. By using a model a lower error level can be
obtained. Thus, by making use of the constraints on the device
errors that are expressed in the models, a reduced number
of test points can give results closer to the true values than
measuring all test points and not using a model. At first this
result seems contradictory; one can take fewer measurements
and get a better result than by taking more measurements.
This result shows the power of the model to give a better
prediction than not using a model.

The results obtained when SVD is used to derive the
empirical models are given in Figs. 4 and 5. These graphs
show that the differences obtained using SVD derived models
are qualitatively similar but always smaller than those from
QRD derived models. For the optimal points on plots of the
differences between predicted and true data, Figs. 3 and 5, the
SVD models give results that are as much as 60% better than
the corresponding QRD models. The SVD optimal models
always have fewer vectors than the corresponding optimal
QRD models.

The effects of increasing the noise level can be seen by
comparing Fig. 6 with a measurement noise level of 0.3 to
Fig. 5 with a measurement noise level of 0.1. Fig. 6 shows
the results for model sizes of 4 to 32 model vectors. The
optimal models have fewer vectors than for the corresponding
simulations with a noise level of 0.1. The effects of decreasing
the noise level to 0.03, shown in Fig. 7, are to increase the
number of model vectors in the optimal models. This effect
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Fig. 4. Rms difference between predicted values and measured values using
SVD derived models and an rms measurement noise of 0.1.
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Fig. 5. Rms difference between predicted values and true values using SVD
derived models and an rms measurement of 0.1. .

o 50 100

of noise level and method of derivation are summarized in
Table II. This table gives the optimum number of model
vectors for the reduced set of 32 test points for both model
derivation methods and three noise levels and compares them

number of empirical model vectors _>
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TABLE II
OPTIMUMNUMBEROF MODEL VECTORSFOR 32 TEST POINTS

Pred-Meas

Pred- True

Noise 0.03

QRD SVD
13-16 10

16 10

Noise 0.1
QRD SVD
11-17 10
11-15 10

Noise 0.3
QRD SVD

10 6-8
10 7

0.0

10 20 30

Fig. 6. Rms difference between predicted values and true values using SVD
derived models and an rms measurement noise of 0.3.

.number of empirical model vectors ->

.with the minimum difference locations for the difference

between the predicted values and the measured values. A range
of model sizes is given if the other locations have differences
within I% of the minimum difference. The qualitative results
for 16,64, and 96 reduced test points are very similar to those
shown in Table II.

VI. SUMMARY OF SIMULATION RESULTS

The following summarizes the observations that relate to the
four questions which were presented above. On the question
of how to determine the optimum model size, the simulations
show that, in general, the optimum size for the difference
between the predicted values and the true values occurs at
the same location as the optimal size for the difference
between the predicted values and the measured values. For
real data the true values cannot be determined; thus, one way
to estimate the optimum model size is to determine the location
of the minimum difference between the predicted values and
the measured values using the validation set. Regarding the
effects of the number of test points, as the number of test
points increases the size of the optimum model increases
and the differences decrease. With a larger number of test
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Fig. 7. Rms difference between predicted values and true values using SVD
derived models and an nns measurement noise of 0.03.

points, more model information can be pulled out of the
noise.

The simulation shows that on the question of the relative
advantages of using QRD versus SVD to derive the models,
SVD does significantly better. The model sizes are consistently
smaller. This means that less random error is mapped on to
the model. The differences between the predicted and the true
values are from 40 to 60% smaller for SVD models versus
QRD models. Even though the SVD algorithm takes about'
three times longer than the QRD algorithm, this analysis is
done off-line from the testing and so does not affect testing
time. In fact, the smaller differences obtained using SVD mean
that when using SVD models fewer test points are necessary
to obtain the same accuracy than when using QRD models,
thus speeding up the test times. Finally, the simulations show
that as the noise level increases, the number of vectors in
the optimum model decreases and the differences between the
predicted values and the true values increase. With more noise
present the QRD and SVD methods can pull less of the model
information out of the empirical data.

VII. REAL DATA EXAMPLE

This same analysis was applied to data taken on 13-
bit AID converters. Data from 78 devices were separated
into 50 error vectors for the model vector set and 28 error
vectors for the validation' set. This data was run through the
simulation program and modeled with both QRD and SVD.
The measurement errors have an rms amplitude of about 0.5
least significant bits (lsb's), and the measurement noise is
about 0.021 Isb's. This model-to-noise ratio is about the same
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Fig. 8. Rms difference between predicted values and measured values using
QRD derived models (dashed lines) and SVD derived models (solid lines)
for data from 13-bit AID converters with an nns measurement noise of about
0.021.

as that of the simulation data with a noise of 0.03. Fig. 8
shows the rms difference between the predicted values and
the measured values for QRD and SVD derived models with
sizes from 4 to 32 vectors and two sets of test points: 32 and
a full set of 8192. As with the simulation, the SVD results
give a sharper comer than the QRD results. The SVD and
to a lesser extent the QRD results indicate that nine model
vectors account for the major portion of the device errors. The
remaining model vectors are small compared to the noise level.
Based on these curves, a reasonable estimate for the optimal
model size would be 12 for the QRD derived models and 9
for the SVD derived models.

VIII. SUMMARY

The simulation program showed the relationship that ex-
ists between the two methods of deriving empirical models
described here, and the resultant differences between the
predicted values, the measured values, and the true values. The
SVD derived models gave results significanClybetter than the
QRD derived models. The simulations were run with a well-
defined model structure. To what extent these observations
apply to other cases is not clear. Certainly, the results with the
real data indicate the same kind of behavior as was observed
for the simulations.

The size of the opiimal model varied with the number of
selected test points, the method used to derive the models,
and the ratio of the model size to the noise level. In all
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cases, however, the model size that gave minimum difference
between the predicted values and the measured values was
very near the optimal model. Thus, this appears to be a good
method for locating the optimal model size. Another observed
feature was that the difference between the predicted and the
measured was always larger than the difference between the
predicted and the true. A theoretical proof of this observation
is being developed.
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