
--- - -- --

NIST Technical Note 1428

High-Dimensional Empirical Linear
Prediction (HELP) Toolbox

Users's Guide, Version 2.2

Andrew D. Koffman,
1: Michael Souders, and
Gerard N. Stenbakken

Electricity Division,
National Institute of Standards and Technology,
Gaithersburg, MD 20899-0001

and

Hans Engler

Department of Mathematics,
Georgetown University,
Washington, DC 20057

May 1999

~~

t
~"T OF Co"'+~

~"t' ~: '"
* *
c: J~ ~~ ~(i;

"""res of toI

u.s. Department of Commerce
William M. Daley, Secretary

Technology Administration
Gary Bachula, Acting Under Secretary for Technology

National Institute of Standards and Technology
Raymond G. Kammer, Director



National Institute of Standards
and Technology
Technical Note 1428
Natl. Inst. Stand. Techno!.
Tech. Note 1428
54 pages (May 1999)
CODEN: NTNOEF

u.S. Government Printing Office
Washington: 1999

For sale by the Superintendent of
Documents
U.S. Government Printing Office
Washington, DC 20402

-



----

HELP Toolbox User's Guide

CONTENTS

I. Introduction

II. Empirical Linear Modeling: An Overview
1. The Need for Efficient Testing ... ...... ... ... ... ... ... .....
2. LinearModels.......................................................................................
3. Construction of Empirical Linear Models ... ............ ........
4. Constructionof Physical,APriori,andMixedModels... ... ... ... ... ... ... ....
5. Assessingthe Model... ... ... ... ... ... ... ... ... ... ... ... ... ......
6. Selectinga ReducedTestPointSet ... ... ...
7. Prediction and Decision for New Devices ... ...... ..................................

2.1
2.1
2.2
2.4
2.5
2.6
2.7

III. Software Description
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

2.ToolboxArchitecture... ... ...... ... ... ...... ... ... ... ......... ... ... .........
3.GlossaryofVariables... ... ...... ... ... ... ......... ... ... ...... ... ...... ... ... ... ... ......

3.1.GlobalVariables... ... ... ...... ... ...... ..........
3.2.ImportantVariableDimensions... ... ... ...... ...... ... ... ...... ... ........
3.3.HELPToolboxFrontPanelParameters ... ...... ....................

3.1
3.1
3.2
3.2
3.3
3.4

IV. Descriptionof ToolboxMenus
Introduction to the Menus and Variables ......... ...... ......... 4.1
1.DataSets ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4.1

1.1.LoadDataFile ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4.3
1.2.ClearCurrentData ... ... ... ... ... ... ... ... ... ... ... ... ... 4.5
1.3.SaveVariable ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4.5
1.4.OrthogonalizeModelingSet ... ... ... ... ... ... ... ... 4.7

2. ParametersandTestPoints ... ... ... ... ... ... 4.8
2.1.ModelingSetDecomposition 4.8
2.2.ParameterSelectionPlots 4.8
2.3. SelectNumberof Parameters 4.9
2.4.TestPointSelection... ... ... ... ... ... ... ... ... ... 4.9

3.ModelAssessment... ... ... ... ... ... ... ... ... ... ... ... 4.10
3.1.ValidateModel... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4.10
3.2.PredictCalibration ... ... ... ... ... ... ... ... ... ... ... ... ... 4.10
3.3. Multiple Model RMS Error Results 4.10

4. Quality Control 4.10
4.1. Individual Prediction Intervals ... ... ... ... ... ... ... ... ... 4.11

5.Plot ... ... ... ... ... ... ... ... ... ... ... 4.11
5.1.MeasurementVectors... ... ... ... ... ... ... ... ... ... ... 4.11
5.2.NormalizationVector .. ....... ... ...... ........ ... ..... 4.11
5.3.SingularValues... ... ... ... ... ... ... ... 4.12
5.4.ValidationAnalysis 4.12
5.5.AnalysisofDUT ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4.12
5.6.ParameterCoefficientVector ... ... ... ... ... 4.13
5.7.PredictionVarianceVectors 4.13
5.8.PredictionIntervals............ ... ...... ... ......... ... ......... ... ...... ... ... 4.13
5.9. Multiple Model RMS Error Results... ... 4.13
5.10. Control Plot Axes 4.13
5.11.HoldPlotAxes............ ... ... ... ...... ... ...... ... ... ...... ... 4.14
5.12.Grid... ... ...... ... ... ...... ... ...... ... ... ... ... ... ... 4.14
5.13.ClearPlot ... ...... 4.14



5.14.PrintFigure ... ... ... ...... ... ... ... 4.14
5.15.PrintBitmapofEntireWindow 4.14

6.Help.................. ................................................... 4.14
7.Exit 4.14

v. HELP Toolbox Tutorial
1.Example: Modeling an Analog Instrument with an Empirical Model 5.1
2. Example: Modeling a 10-Bit AID Converter with Empirical and Mixed Models 5.12

VI. References

ii



- - '-- ---

I. Introduction

The High-dimensional Empirical Linear Prediction (HELP) Toolbox is an optimization tool designed specifically to
meet the requirements of test and measurement engineers. For many electronic devices and instruments, it is not
physically or economically feasible to perform exhaustivetesting. Therefore,test engineersmust formulate abbreviated
test plans that are economical to execute but still yield accurate measures of the overall performance of the tested
products. The HELP Toolbox incorporates a new approach for optimizing the testing of electronic devices and
instruments. The method, high-dimensional empirical linear prediction, is currently being used by mixed-signal
integrated circuit manufacturers to reduce the costs of testing their products, and it is also being used at the National
Institute of Standards and Technology (NIST) to reduce customer's costs for selected calibration services. Examples
of products that can benefit from this approach range from multi-range precision instruments to programmable filters
to integrated circuit analog-to-digital (AID) and digital-to-analog (D/A) converters. However, devices that are
completely digital (digital inputs as well as outputs), are not supported.

The approach is based on a simple mathematical model that relates the device response at all candidate test conditions
to a set of underlying variables. Once an accurate model has been developed, algebraic operations on the model are used
to:

a) select an optimal set of test points that will minimize the test effort required to
achieve a specified level of confidence,

b) estimate the parameters of the model from measurements made at the selected
test points,

c) predict the response of the device at all candidate test points (from
measurements made at the selected test points) as a basis for accepting or
rejecting units, and

d) compute statistical intervals (uncertainty bounds) for the predicted response,
and test the validity of the model, on-line.

The entire process including model development can be performed with the HELP Toolbox, a NIST-developed
graphical software package for use with MATLAB~t specifically tailored to this application. While a general
understanding of the underlying principles is desirable, no mathematical programming is required of the operator.
HELP places special emphasis on empirical modeling using measurement data collected previously on devices similar
to the units under test. Empiricalmodels requireno detailedknowledge of the internaldevice architecture,yet they can
be both accurate and efficient.

In addition to test optimization, the Toolbox is also useful for exploring the structures that underlie the behavior of tested
devices. For example, it can reveal how many variables are actually needed to explain the behavior, and what their
characteristic signatures look like. It can warn production engineers when the manufacturing process undergoes hidden
changes, and it can even be used to help diagnose the likely causes.

While the Toolbox is intended for production testing applications, it is not designed for on-line use. Models are
developed and tested within the Toolboxoff-line,usually from empiricaldata on representativetest units, and an optimal
set of test points is selected. Once created, the models and test point vectors can be exported to the test system'son-line
processor which then drives the testing and calculates the predicted global responses of test devices from on-line

t In order to describe the procedures discussed in this paper, commercial products are identified. In no case does
such identification imply recommendation or endorsement by the National Institute of Standards and Technology or
that the materials or equipment specified are necessarily the best available for the purpose.
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measurements at the selected test points. The required calculations can be executed very quickly with any up-to-date
personal computer or workstation.

The Toolbox software has been developed using the MA TLAB programming environment and consequently requires
that MA TLAB be installed on the host processor. While detailed knowledge of MA TLAB is not required, the user will
benefit from some familiarity with it.

Chapter II of this user's manual provides general background on the theory and algebraic tools that form the basis for
the Toolbox, while chapter III gives a description of the Toolbox menus and variables that are available to the user.
Brief descriptionsof the software architecture,subroutinesand the global variablesthat are used are found in chapter IV.
Finally, section V takes the user through several typical modeling and analysis situations involving two different
products, the first a multirange precision instrument, and the second an integrated circuit AID converter. Real
measurement data are used in both examples.
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II. Empirical Linear Modeling: An Overview

1. The Need for Efficient Testing

Testing is a critical step for assuring the quality of electronic devices. For complicated devices, the cost of testing is
quite significant and may exceed 20 percent of the purchase price of a device. Efficient yet reliable testing strategies
can therefore result in substantial savings. On the other hand, it is important to assure the quality of every individual
device. This need obviously rules out statisticaltechniques such as decidingabout the qualityof an entire lot of devices
from the results of testing a sample: Every device must be tested in some form.

For efficient testing strategies, the key observationis that the number of test points is oftenmuch larger than the number
of parameters that is expected to determine device behavior. For example, a 13-bit AID converter has 213= 8192
possible test points. However, only a few dozen parameters are expected to determine the behavior for such a device.
In fact, examining the circuit topology often results in an overestimate for the number of device parameters, due to
production processes in which components are manufactured simultaneously. If device behavior is determined by a
relatively small number of parameters, it should alsobe possible to predict its behavior and to decide about the quality
of a device from a reduced set of measurements.

Efficient testing strategies try to identify the parameters that govern the error behavior of a device type and build a
mathematical model for it. For a given new device, these parameters are then determined from measurements at a
reduced set of test points, and the mathematical model is used to compute the device response at all test points. This
approach raises the issues of how to construct the model, how to assess its accuracy, how to select an optimal
measurement subset, how to fmd device parameters fromthe subset of measurements, and how to assess the reliability
of a decision about the quality of a device that has been reached in this way.

2. Linear Models

We consider a device whose behavior can be exhaustively measured at m different test points. (If the test space is
continuous,m represents some reasonablydensesamplingof that space.) The actualbehavior at each of thesetest points
differs from the nominal one by a quantity that is here called the device response. The goal of linear modeling is to
produce a "condensed" description of the response patterns of a device and to use this to predict the response of an
individual device from a suitably selected set of test points with known reliability. We assume that the set of m
candidate test points is specified apriori; we do not consider here how it should be chosen.

We denote the true device response by the column vector y with m components, the measured device response by y,
and the vector of measurement errors by £'. Then the equation y = y + £' holds. It is assumed that any measurement
bias has been identifiedand correctedbeforehand; therefore,the averagesof the elementsof £' for a very large number
of repeated measurements are zero. For the same reason, some information about the size of £' , such as the (order of
magnitude of the) standard deviations, is expectedto be known. The units at each test point shouldbe chosen such that
the uncertainties across the test-point set are as similar in magnitude as possible. This step may require that the data be
renormalized from test point to test point. If this is not done, then test points with data that are particularly large in
magnitude, due to large test-point standard deviation, will have a stronger influence on the test outcome than other
points.

In linear modeling, it is assumed that the true device response of any fixed device can be expressed in the form
y =Ax + R. Here A is an mXn model matrix. It is specific to the device type and incorporates information that
depends on the device design, its components, its production process, etc. The nX1vector, x, consists of parameters
that are specific to an individual device. R denotes a remainder term. At the outset, neither the matrix A nor the
number n of its columns is known.

The parameter vector x sometimes has some actual physicalmeaning. For instance, it may reflect some properties of
the components of a device. In this case, some nonlinearmodel can often describe the true response, and by linearizing
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about the nominal behavior, a linear model is obtained. Models that are derived on the basis of such considerations are
called physical models.

In other cases, the columns of A represent typical response patterns that are based on engineering considerations. For
example, they may describe contributions ftom single bit errors or simple superposition errors for AID converters, with
the components of x describing the contribution trom each response pattern to the actual device response. Models that
are derived in this form are called a priori models.

If the components of A are determined purely empirically trom the responses of a "modeling set" of devices that have
been tested exhaustively, the result is called an empirical model. Typically, the model matrix A in this case is not
uniquely determined, the parameter vector x has no clear meaning, and statistical methods have to be used to construct
the model [1].

If combinations of these approaches are used, the result will be called a mixed model.

The Toolbox has provisions for incorporating physical and apriori model information with empirical information to
construct mixed models. However, the main focus of the Toolbox is on empirical linear models and their use. In such
cases, new devices must be sufficiently similar to the devices in the modeling set, and the modeling set must be
sufficiently homogeneous in this respect.

To be able to work with a linearmodel, the remainder term y is lumpedtogether with the measurement error £'. The
result is denoted by £. This model error is treated as a random quantity, and its statisticalproperties must therefore be
determined. Thus, the linear model can be described by the equation y =Ax + e .

3. Construction of Empirical Linear Models

To construct an empirical model, we assume that an mxp matrix of modeling data A is given. Its columns are vectors
of completemeasurements,onefor eachof thep devicesin themodelingset. Wewantto extractan n-dimensional
approximation of these response patterns, Le., an mXn model matrix A such that the columns of A can (nearly) be
expressed in terms of the columns of A. There may also be an additional set of validationdata, i.e., q empirical vectors
of exhaustive measurements in a matrix Y that are to be used to assess the quality of the model.

The number of parameters, n, must be determinedalong with the model matrix, A . This number should be kept small,
but it should be large enough to explain all but a small portion of a typical device response. The choice of n depends
on the amount of noise included in the modeling data. One expects to obtain the columns of the model matrix A as

linear combinations of the modeling data in A .

In order to construct an empirical model matrix ftom the matrix of modeling data A , the Toolbox first computes its

singular value decomposition A =USVT [2]. Here U has size mxp with orthonormal columns, V has sizepxp with

orthonormal columns, and the matrix S = diag( S}'S2"'" Sp) contains the singular values Sj that are non-negative and

decreasing. One then chooses the model matrix as A = U} , consisting of the first n columns of the left orthogonal factor

U . It is known that no model matrixwith n columnsgives a better approximationof the modeling data A with respect
to a numberof approximationcriteria. The columnsof U1 can be viewedas the principalpatternsin the device
behavior, and the numbers Sj describe the size of the contributions of these patterns.

The key problem now is the choice of n, the number of parameters. This choice is usually based on the sequence
s},S2' Thereasonis thatwhenthe modelA that iscomputedin thisformis fittedto themodelingdata,themean
squared sizes of the residuals are given by

2.2
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These numbers are expected to be smaller than the residuals for new devices, but the bias can be corrected. There may
also be a validation set available, i.e., an mxq matrix Y of complete measurements for q devices.

To choose n, one begins with a visual inspection of a plot of the singular values, s;. Such a plot sometimes reveals an

"elbow", i.e., a fairly steep decline of the s; up to a value sn , followed by a nearly flat part. This characteristic may

become more visible if the logarithms of the s; are plotted. The latter plot is sometimes called a log of eigenvalue

(LEV) plotand is provided by the Toolbox. It is recommended [3] to choose n such that the first value of the "flat"
portion is still included. It may also occur that the LEV plot has a "step" shape. In that case, the parameters up to and
including the bottom of the step should be chosen.

For a selection of n that can be justified more rigorously under certain statistical assumptions, one sets

( J

2

LS/
Q(n)=~

Lsi
;>n

for n = 1,2,...,p-l.

The number Q( n) is never larger than p-n, which is the dimension of the set of residuals of modeling data ITom a model

with n parameters. It can be viewed as a statistical estimate of the dimension of the set of residuals. Thus, if Q(n) is
small, the residuals "look" as if they are concentrated on a low-dimensional set. One should then increase the number
of parameters in order to capture the few additional patterns that appear to dominate the residuals. On the other hand,

the Q( n) will decrease for large n. The Toolbox plots the Q( n) in the Q-Max plot, and the recommendation is to pick

the value of n for which the plotted quantity is maximal or the smallest value for which it reaches a plateau.

A third procedure for choosing n consists of selecting this number such that the expected residuals at individual test
points for new devicesare sufficientlysmall. For many applications,this criterionreflectsthe ultimate goal of achieving
a given level of accuracy with the minimum number of parameters or test points. Based on the modeling set data, the
Toolbox computes and plots an estimate of the root-mean-square residuals ern) that would result ITomfitting a new
device to models with n parameters for n = 1,2, This computation is essentially the quantity

e( n) = I 1 'f S2
1 (m-n)(p-n) ~ ; ,I=n+1

up to a small bias correction. Under certain statistical assumptions, e( n) can be shown to be the expected root mean
squares (rms) of residuals for new devices, if thesewere to be describedby the same n-dimensionalmodel. The Toolbox
plots e( n) in the RMS Residuals plot. One can choose n such that the plotted quantity is no greater than a
predetermined required uncertainty. If there is no clear choice, the plot can be used to predict the effect of changing
the number of parameters. The plot will always indicatethat increasingn decreasesthe size of the residuals. However,
for large n, only more noise will be captured and predicted by the model. It should be kept in mind that the e( n)
computed in this way are estimates of the residuals that would occur if all test points were used to estimate the model
parameters, x. For a reduced set of measurements, the rms residuals can be expected to be somewhat larger.

If a validation set, Y , is available, the Toolbox can give more accurate estimates of the residuals that occur when a
reduced set of measurements is used. In this case, the Toolbox displays (in the Valid. Error Stats. display box) the
maximum, minimum and rms residual error that occurs when the selected n-column model is used with a subset of k
selected test points (see section 11.6)to estimate the responsesat all m test points. The displayed statisticsare computed
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from all p devices in the validation set. The validation set can be used in this way to explore the tradeoffs between
model size, n, and the size k of the reduced measurement set, and the errors that result.

In practice, the recommendations from the three plots are often not consistent or not clear. The Q-Max plot will usually
give a maximum, but it may be much too large. This case may correspond to a fairly even decline in the RMS Residuals
plot and to the absence of an elbow in the LEV plot. From numerical experiments, it appears that not much can be
gained by increasing the number of parameters in such a case. The recommendation then is to choose the smallest value
of n that one is still comfortable with [3]. There are a number of other graphical or statistical routines available in the
Toolbox, but in an unclear situation these just add to the confusion.

* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * HELP Toolbox * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Modeling data are loaded into the Toolbox via the [Data Sets] menu. There, the measurement data can be split
between data designated for the modeling set and data for the validation set. If the data need to be normalized,
an mxl normalization vector must be entered [Data Set/Load Data File/Normalization Vector], whereupon the
user is cued to choose which data sets (modeling or validation or both) are to be normalized.

To construct an empirical model matrix from a previously loaded matrix of modeling set data A, the [Parameters
and Test Points] menu is used (section 11.3). The [Modeling Set Decomposition] submenu is used to perform the
singular value decomposition (SVD), producing the left singular matrix, U , from which the first n significant
columns will be chosen. To determine and select the best choice for n based on the SVD of the modeling set, the
[Parameter Selection Plots] submenu is used. The three diagnostic plots are found there. The effects of a given
choice of n can subsequently be tested via the validation set using the procedures outlined in section 0.5, Assessing
the Model.
********************************************************************************************

4. Construction of Physical, A Priori and Mixed Models.

Physical models are usually developed outside of the HELP Toolbox and then imported. For example, a physical model
of an electronic circuit could be developed through a sensitivity analysis using a circuit simulation tool such as SPICE.
Such a model might be comprised of vectors of partial derivatives of the circuit response errors with respect to the

electrical parameters (resistors, capacitors, transconductances, etc.) that define the circuit, evaluated at their nominal
values for each candidate test point.

A priori models, also developed outside the HELP Toolbox, are usually based on engineering considerations that go
beyond the scope of this discussion. However, for both physical and a priori models, it is often true that these will not
be complete enough to explain the behavior of the modeled devices with accuracy sufficient for all applications. This
is due to approximations in the modeling caused by nonlinear behavior, lack of detailed knowledge, unmodeled
interactions among the components, effects of unmodeled parasitics, etc. In addition, it is often the case that the
resulting models are not full rank, i.e., two or more of the columns may be linearly dependent. For example,
components in cascaded gain stages give rise to identicalor collinearsensitivityvectors. When the model A is not full
rank, there will be ambiguityin the detenninationof the correspondingparametervector, x. Whilethis may not present
any problems for subsequent response predictions, it could cause problems if the parameter estimate x is used in
trimming procedures, i.e., to detennine how much adjustmenta componentrequires to bring the circuitresponse within
specifications. The rank of a physical or a priori model can be checked using the Toolbox by performing an SVD on
it, and looking at the diagnostic plots. The LEV plot will show an abrupt knee at n corresponding to actual rank; if n
is less than the number of parameters in the model, then some ofthe parameter vectors are not independent. Note that
if it is important to preserve the physical or engineering meaning of the fmal model, the SVD should only be used as
a diagnostic rank test, and SHOULDNOT be used to create a new model from the physical or apriori model. This is
because the vectors of the U matrix model that results from the SVD are each weighted combinations of the original
vectors.

The accuracy of physical or a priori models can be improved while maintaining their descriptive advantages by
augmenting them with empirical model data to produce a mixed model. To create an appropriate mixed model, an
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empirical model, Ae = [ael ae2... aenl] with nl columns is fIrstdeveloped from modeling set data as described in the

previous section (11.3). The vectors of the empirical model are each orthogonalized to the n2 vectors of the physical

or a priori model, Ap = [apI ap2 ... apn1 ] , using the method of Gram-Schmidt orthogonalization:

nl

ao; = ad - Laij apj
j=1

where
T

aeia pj
a.. = ---:r-,

I} ajapj
and Ao = [aol ao2 ... aOn1 ].

The new orthogonalized empirical model, Ao, describes only the behavior present in the modeling set that is not

described by the physical or apriori model. An m x( n2 + nl) mixed model Am is produced by augmenting Ap with
Ao: Am = [Ap Ao].

********* ** ** ******* * ** ***** *** **** *** * HELP Toolbox ** ** *** *** *** ***** * ********************

To create a mixed model in the Toolbox, first create the desired empirical model. Next, load in a previously
created physical or a priori model using the [Data Sets/Load Data File/Full Model] menu. Orthogonalize the
empirical model to the full model (physical or apriorI) using menu item [Data Sets/Orthogonalize Modeling Set].
Append the desired number of columns of the orthogonalized empirical model to the full model using the menu
selection [Params and Test Pts/Modeling Set Decomposition] and then [Params and Test Pts/Select Number of
Parameters]. Be sure the "Append" box is selected, as opposed to the "Replace" box.
********************************************************************************************

5. Assessing the Model

Suppose a linear model y =y + e=Ax + e for the measured device response is given, with m test points, n device
parameters, an mXn model matrix A, and model error e. Then the statisticalproperties of the model error, e, are of
interest. These properties are used to decide if the modeling data are adequately described by a linear model, to give
bounds for the accuracy of prediction of new devices, and to detect devices for which the model is not adequate.

We fIrst discuss the case where there is also a validation set, in the form of an mxq matrix, Y . In this case, one fIts Y
to the n-dimensional model, using ordinary least squares. The residuals from this fIt are the columns of a matrix, R,
that has the same dimensions as Y .

From the matrix of residuals, R, the Toolbox computes the estimated standard deviation, cr , corrected for degrees of
freedom and for prediction variance, as follows:

a=; ~ tt (y> jI;J' .
q(m n) i=1j=1 1+ ~j

where y~ are elements of Y , and y~ are elements of the matrix of predicted values, and ~j contains the prediction
variance components [4]. (For this purpose, the number of selected test points should be m -- see box below.)

One should fIrst check to see if cr is approximately the size expected, Le., on the order of the measurement standard
deviation for the validation set data. If it is substantially larger, it should at least agree with the value c( n) returned

by the RMS Residuals diagnostic plot that was computed when the model was created. If cr is much larger than c( n) ,
it can be concluded that the validation set contains information that was not present in the modeling set. Plots of the
residual vectors that comprise R may reveal certain devices in the validation set that do not adequately conform to the
model. If cr agrees reasonably well with c( n) but is substantiallylarger than the measurement standarddeviation, this
is an indication that the model could be improved by choosing a larger value for n. The decision to increase n will
probably depend on whether or not the residuals are small enough to be acceptable. To decide this, a more accurate
estimate of the expected performance of the model should be made after the test-point selection process (see
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section 11.6),when the effects of a reduced set of test points are included. For most cases, the fmal decision about the
model dimensions and composition should be based on the uncertainty bounds that are produced. These can be
computed for the validation set and are discussed in section 11.7.

********** ********** ***** **** ***~****** HELP Toolbox ****** **************** *********** ****

For most purposes, the rms residuals value returned in the Valid. Error Stats. box can be used as a good
approximation for a. The two will differ slightly because the rms residuals value has not been corrected for
degrees of freedom and prediction variance. Since both quantities, a and rms residuals, are computed from
predictions y, they are dependent on the number of test points that have been chosen. To compare these values

with the expected value for fJ, and with the value c( n) given in the rms residuals diagnostic plot, ALL test points
should be selected. To get a better estimate of the actual errors that will result from the model in use on test
devices, only the REDUCED set of test points should be used.
********************************************************************************************

If there is no validation set available, one can use c( n) to get a rough estimate of the size of the residuals. These results
will only be approximate though since they do not take the reduced test points into account, and they are subject to the
other approximations noted above.

When the model from the modeling data is used to predict the behavior of a new device under test, the uncertainty
associated with this prediction comes from several different sources. These sources are the estimation error for the
model (due to the fact that the modeling set data themselves contain measurement noise), a truncation error for the
model (due to the fact that the true device behavior in all likelihood is determined by more than just n parameters),
another truncationerror for the deviceunder test (since it is not expectedto really fit any model with only n parameters),
and fmally the measurement error for the device under test. Only the last error varies if a device under test is measured
repeatedly. However, it can be shown that the truncation errors and the estimation errors can also be treated as if these
were random quantities. What makes these behave differentlythanjust measurement errors is the fact that they contain
multiplicative effects on the overall prediction error. The truncation error that occurs during the model construction
has a stronger effect on the overall prediction error if the device itself differs substantially from its nominal behavior.
Essentially, a device that is very close to its nominal behavior will be predicted very accurately by almost any linear
model. This effect can be analyzed mathematically and is taken into account by the Toolbox algorithms.

6. Selecting a Reduced Test-Point Set

Suppose a linear model, y = y + £ =Ax + £ , for the measured device response is given; with m test points, n device
parameters, an mxn model matrix A, and model error £. We assume that the model matrixhas been determined from
a modeling set as outlined above; thus the matrix A now has orthonormalcolumns. We want to choose a reduced test-
point set J , i.e. a subset of the set of all test points (1,2, ..., m) such that the device behavior can be predicted reliably
at all m test points from measurements at the test points in J .

Once J has been chosen, an estimate, x, of the device parameters is found from the measurements at the test points
in J with the method of least squares, and the predicted device behavior, y, is computed. The differences between

the estimate, y, and the measured behavior, y, then depend on the error vector, £, and on the choice of test-point set,

J. Recallthat £ incorporatesboth measurementerrorsand errors that are due to the use of a linear model. One would
like to select J automatically and efficiently such that these differences are small with high reliability. This is a
problem from experimental design [5].

In order to discuss the test-point selection method, let us assume that the elements of £ have homogeneous variances,
i.e., that its standard deviations are the same at all test points and that these errors are uncorrelated. Both assumptions
are questionable, since the measurement uncertainties are usually not exactly the same at all test points even after
changing units, and since the entries of the vector £ may include remainder terms that come from fitting the measured
response to the model. Such remainder terms will always be correlated. However, the effects of violating these
assumptions can be analyzed and controlled.
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Suppose a subset J with k ~ n elements is desired. The Toolbox can select these test points automatically, using a
method that employs two phases. In the fIrstphase, a minimal subsetof n test points is detennined by applying the well-
known QR factorization with column pivoting [2] to the transpose of the model matrix, A. The fIrst phase can be
summarized as follows: The fIrst test point that is selected corresponds to the row of A that has the largestnorm. All
other rows are orthogonalized with respect to this row (a suitable multiple of this row is subtracted from all other rows
such that each result is perpendicular to the row that was chosen fIrst),and their nonns are recomputed. The test point
corresponding to the largest remaining nonn is chosen next, and the process is repeated until n test points have been
selected. At this point, all remaining rows have nonns equal to zero, and the fIrst phase is over. In the second phase,
k - n additional test points are selected. To explain the second phase, let us assume that the "minimal" reduced test-
point set that was the result of the fIrst phase is to be used for predicting the behavior of the entire device. This
prediction will amplify the measurement errors at the selected test points, and the amplifIcation factors (prediction
variances) can be computed for each test point that has not been selected. (At the reduced test-point set, these
amplifIcationfactors are equal to 1 at this stage, since the predictionsthere agree with the measurements.) Of those test
points that have not yet been selected, the one with the largestprediction variance is included in the reduced test-point
set. The prediction variances then are recomputed and the procedure is repeated, adding one test point at a time until
the desired model sizehas been reached. We now delete all rows of A except those that correspond to the reduced test-
point set J. The result is the reduced model matrix A with k rows and n columns.

There are several possible optimality criteria for the choice of the reduced test-point set J. These all can be interpreted

as attempts to make some kind of confIdence set for the prediction y as small as possible (minimizing its volume, its
diameter, etc.). It turns out that the fIrst phase of the selection method that is given above tries to minimize the volume
of such a confIdence set. The second phase tries to minimize the diameter of another type of confIdence set. Thus, the
two phases do not pursue the same optimality criterion. However, it is known that in certain limiting cases the two
criteria are equivalent. There is also strong numerical evidence that the two stages are compatible. Moreover, the test-
point sets that are found with this method usually are also very good selections for all sorts of other optimality criteria.

Theoretically, an optimal reduced test-point set for any optimality criterion could be found by searching through all
possible subsets, computing the relevant perfonnance criterion, and selecting the best. However, the enormous size of
the set of all possible test-point setSmakes this approach completelyunfeasible. For example, if a device has m = 200
test points and the reduced set is to have k = 30 test points, then the number of candidate subsets is equal to the binomial
coeffIcient

(23~0) =4x 10" .
It is clearly impossible to examine them all. Thus, approximate methods must be used. Even iterative methods that
have been developed specifIcally for experimental design purposes are usually too expensive for problems that
come from linear modeling. Then "one-pass" methods that build up the reduced test-point set, J, in a single sweep
are the only alternatives remaining. The method that is used by the Toolbox is of this type. Numerical evidence
shows that the results of the method are usually not optimal, but that the reduced test-point set that is chosen here is
better than 99.98 percent or so of all possible choices and that it cannot be improved by much.

7. Prediction and Decision for New Devices

When the Toolbox has constructed a model and detennined its properties, it is ready to use measurement data from a
new device, taken at the reduced test-point set, to predict its measured behavior at all test points. The parameter vector,

x , is fIrst estimated from the reduced measurement data y using the least squares method

X =(ATAflATy .

Fromthe estimate, x, the predictedbehavior,y, at alltestpointsis givenby
y=AX.
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**** **** **** *************************** HELP Toolbox ***** *** ** * **** ******* * ** ** ** ** ********

Parameter vector, x, and prediction, y, are automatically computed for vectors in the validation set when the
[AssessModellValidate Model] menu item is selected. When measurement data on a device under test is available
at the selected test points and has been loaded into the Toolbox, then x and yare automatically computed when

the [Assess Model/Predict Calibration] menu item is selected. A plot of y can be obtained from the

[Plot/Validation Analysis/Response Predictions] or [PlotJDUTAnalysis/Response Predictions] menu items.
********************************************************************************************

Along with this prediction, some information about the measurement uncertainty at each test point is also needed. The
predicted behavior, together with an uncertainty estimate for the prediction, is used to decide whether the behavior of
the device is within specified tolerance bounds.

It may happen that a device under test cannot be well describedby a given linear model, since its error patterns include
features that were not identified from the modeling set. This may occur, e.g., if a production method is changed, if
components in a device are replaced, or simply if measurements at the device under test are performed with less
precision. The result will show up in a larger than expected error at any test point. Such errors are called non-model
errors. Referring back to section 11.5,non-model errors are indicated when the residuals of the new device are
significantly greater than a, after correcting for degrees of freedom. The Toolbox has a procedure that incorporates
the effects of non-model error into the calculateduncertaintybounds, based on the size of the residuals at the measured
test points only. Consequently, the bounds are designed to contain the true measured response with specified
confidence, even when the model fits rather poorly.

It is assumed that the upper and lower tolerance bounds for an acceptable device are in the form of two vectors of length
m. A device is acceptable if its measured behavior at each test point is within the corresponding bounds. The Toolbox
computes prediction intervals for the measured values. (Prediction intervals are computed statistical bounds around the
predicted values that are asserted to bound the measured behavior with a given confidence. Note that since measured
behavior is true behavior plus measurement noise, the prediction intervals bound true behavior with even greater
confidence.) These intervals are calculated from the residuals at the reduced test points as

y :t: rs..JI + Pc ((I-al2) ,

where rs is the standard deviation of the residuals at the measured test points given by

1
r~.= k _ n

k
~ (_ Af)

2

£.JYj-Yj ,
j=1

such that Y' is the estimate of the device response at the reduced test points, where Pc is the mX 1 prediction variance
coefficient vector given by

diag{ A(AT Afl AT},

and (l-al2 is the 1-( <X /2) quantile of the ( distribution with k - n degrees of freedom. The Toolbox uses a coverage
probability 1-(<X/2) = 0.9545. Note that the square root operation is performed element-by-element in the above
prediction interval calculation.

It is assumed here that theseresidualsat the measuredtestpoints can be treatedas normally distributedrandom variables
and include a "representative" sampling of the non-model error that exists, as well as the contributions from
measurement noise, model truncation, etc. Tests of these intervals on several examples of real measurement data
indicate that they tend to be somewhat conservative, Le., 95% intervals typically bound 96% to 97% of the
measurements.

These individual intervals can therefore be treated as type A measurement uncertainties [6] that would occur ifthe
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device under test was tested exhaustively. If one decides to reject a device as soon as its prediction interval extends
beyond the tolerance bound at any test point, no more than a fraction of about a. /2 =0.0227 of all "bad" devices will
be accepted, that is, the type-I error probability is about ex/2.

The rationale behind the decision procedure is equivalent to making the hypothesis that a device is "bad", the null
hypothesis [5]. This hypothesis means that the data have to prove that a device is good, not that it is bad. If the device
under test were bad, its measured behavior would exceed the specified tolerance bounds at no less than one test point.
The probability that its prediction interval at this test point is within both tolerance bounds is at most a. /2 and is much

smaller if the behavior exceeds the tolerance bound substantially. Thus, even if a bad device exceeds the tolerance
bounds at only one test point, it will escape detection with a probability of no more than ex/2.

A set of individual prediction intervals for a particular device does not contain all measured values for this device with
probability 1- a. , nor does a fraction of 1- ex of these intervals contain the measured behavior for this device. Intervals
that come with a guarantee that they predict the measured behavior for all test points for all but a small fraction of
devices under test are called simultaneous prediction intervals and must be wider than individual intervals. The Toolbox
computes such intervals with the same specified coverage probability 1- a. for the new device. These bounds are just
the predicted values plus or minus a suitable larger t-quantile times the standard deviations that are also computed for
individual prediction intervals. These values are typically about twice as wide.

In simulations, it is observed that a larger portion of unacceptable devices is identified correctly than the advertised
fraction 1-ex/2. This observation is true regardless of the proportion of bad devices in the set that is under test. The
reason is that many bad devices will in fact be identified almost certainly, since their behavior exceeds the bounds
somewhere substantially. The decision procedure is designed to work reliably even for "marginal" devices. Since
the prediction intervals are adjusted for each device under test by means of the standard deviation of the residuals,
"bad" devices are still reliably identified if non-model errors appear, and the coverage probability of individual
prediction intervals does not decrease. However, simultaneous prediction intervals are observed to be less reliable
in the presence of non-model errors or increased measurement uncertainties. That is, their coverage probability may
be less than the advertised value 1-a. if there are non-model errors or if the measurement uncertainty for devices
under test increases.

Along with a large fraction of bad devices, a certain fraction of acceptable devices will also be rejected. In fact, a
device that is just barely within the tolerance bounds will be rejected with probability close to 1-a. , since it is
almost indistinguishable from a "bad" device. The occurrence of such type-II errors is in the nature of statistical
decision procedures. If the measurement uncertainty is increased for devices under test or if non-model errors
appear, the probability of type-II errors will also increase. The result is a larger overall proportion of devices that

are rejected, even if their true quality does not change. .Anindicator for this phenomenon is a value for rs/ a that is
substantially and consistently larger than unity, approaching and exceeding 2. This result may indicate that the
model is truly no longer adequate and suggests that it be tested against a new validation set or that a new model be
built.
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III. Software Description

I. Introduction

The purpose of the High-dimensional Empirical Linear Prediction (HELP) Toolbox is to provide test engineers and
technicians with a tool to help select optimal testing strategies for complex electronic devices and instruments in a
very user-friendly manner. The software has been developed using the MATLAB@programming environment. It
is designed for use without detailed knowledge of the theory and mathematics governing empirical linear prediction.
The menus are set up for use in a general sequential, top-down, left-to-right fashion. User prompts and data-entry
windows aid the user in following the correct sequence in developing and analyzing models.

The software has evolved through several generations of programs and subroutines to its present form. Originally,
the software consisted of numerous subroutines requiring a great deal of mathematical knowledge to proceed
sequentially through formulation of model and application and analysis of the model using empirical data. The
present HELP Toolbox consists of a main program controlling the main HELP window and menu system with
numerous subroutines that are called by the main program. The subroutines control graphical user interfaces (GUIs)
that help the user move through the menus and includes additional subroutines that perform some of the
mathematical algorithms. Most of the mathematics is contained within the main program; however, a few of the
previously developed routines were maintained separately for ease of development.

2. Toolbox Architecture

The design of the HELP Toolbox incorporates what is known as the "switchyard" technique for developing GUIs.
The switchyard technique is a programming device whereby if/elseif conditional structures are used to create
separate sections of code that are accessed by calling the main program with a particular flag set. The flag triggers
the running of the desired switchyard section. Fig. 3.1 shows the general switchyard structure of the program.

function help22(action); Define a function called help22 with one input argument.
if nargin<l,

action = 'start'; Ifthere are no input arguments, set action = 'start'.
end
global (list of global variables) Assign all the global variables
if strcmp(action,'start'), This is the first switchyard section of code labeled 'start'.

Initialize HELP Window and menu system.

elseif strcmp(action,'load_mbv'), This is the second switchyard section labeled 'load_mbv'.
Perform some operation.

elseif ...Numerous additional switchyard sections of code. . .

elseif strcmp(action,' help'),
Bring up Help Window.

elseif strcmp(action,'done'),
Close HELP Window and clear all global variables.

end

When the HELP Toolbox main program is run from the MATLAB command window with no input arguments (no
flags set), the program initializes the HELP Toolbox window with all its menus and graphical components and
declares all the global variables used by the Toolbox. Selecting one of the Toolbox menus will call the main
program again, this time, with one of the switchyard flags set. The appropriate switchyard section of code will run,

3.1



performing the task requested. All global variables operated upon by the code, are saved and accessible to each
subsequent call of the program.

The switchyard technique is the recommended method of developing multiple MATLAB routines that are to be
controlled using a common GUIt. One characteristic of this programming method is that each switchyard section is
not directly able to communicate with other sections without the use of global variables because each section is
called with a separate running of the program. Manipulation of handle graphics allows the user to pass input
parameters into a switchyard section but variables cannot be directly passed between sections of code. (Handle
graphics is an object-oriented graphics system that provides the individual components necessary to create and
manipulate computer graphics.) In order for variable values to pass between switchyard sections, the variables must
be defined as global within all programs in which the programmer desires to maintain common variable values (see
Local and Global Variables in the MATLAB Users Manual). Assigning numerous global variables has advantages
and disadvantages. A disadvantage is that if a user assigns one of the HELP Toolbox global variables to be global
within the MATLAB command window and then inadvertently changes the value of a global variable within the
MATLAB command window, subsequent Toolbox commands using that variable will be affected (adversely). On
the other hand, assigning global variables gives the user the power to access many parameters within the MATLAB
command window, providing broad analysis capabilities to the HELP Toolbox. Taking advantage of global
variables within the MATLAB command window requires the user to have some knowledge of MATLAB.

As mentioned above, the HELP Toolbox software consists of a main program and several types of subroutines that
are called by the main program. There are subroutines that create data input windows to pass data into the Toolbox.
There are subroutines that create error and information windows to help guide the user through the HELP
procedures. There are also subroutines that perform the mathematical computations required by the procedures. All
the subroutines are invisible to the user. Only their effects are visible. That is, the user sees the graphical user
interface windows that appear and the user sees the model-related parameters that appear on the front panel of the
main HELP window.

The subroutines that use graphical windows to input data or display error messages or information are programs that
manipulate handle graphics. They create graphical objects with assigned properties such as pushbuttons, radio
buttons static and dynamic text objects, and sliders. Fig. 3.2 shows an input box from the HELP Toolbox that
contains static and dynamic text boxes, radio buttons and a pushbutton.

3. Glossary of Variables

3.1. Global Variables Used in the HELP Toolbox

ADAT
AFULL
ARED

Data Set (any data loaded into HELP Toolbox later to be assigned to specific variable)
Full Model (mxn)
Reduced Model (kxn)

t See the workbook for the 1995 MATLAB Conference Tutorial entitled "Building a Graphical User Interface with
MATLAB."

3.2



--

ATRAIN Modeling Set (mxp) used to develop a device model
AVAL Validation Set (mxq) used to test the device model
BINTlMEA Upper bound for SimultaneousMeasurement Prediction Interval (mxr)
BINTIV AL Upper bound for SimultaneousValidation Prediction Interval (mxq)
BINT2MEA Lower bound for Simultaneous Measurement Prediction Interval (mxr)
BINT2VAL Lower bound for Simultaneous Validation Prediction Interval (mxq)
IINTIMEA Upper bound for Individual Measurement Prediction Intervals (mxr)
lINT 1VAL Upper bound for Individual Validation Prediction Intervals (mxq)
IINT2MEA Lower bound for Individual Measurement Prediction Intervals (mxr)
IINT2V AL Lower bound for Individual Validation Prediction Intervals (mxq)
INDV Index showing which columns of Data Set are to be assigned to the Validation Set
INTB Absolute bound for Simultaneous Validation Prediction Interval (mxq)
INTBM Absolute bound for Simultaneous Measurement Prediction Interval (mxr)
INTI Absolute bound for Individual Validation Prediction Intervals (mxq)
INTIM Absolute bound for Individual Measurement Prediction Intervals (mxr)
NMFACTORM Nonmodel Factor for the Reduced Measurement Data (rx I)
NMFACTORV Nonmodel Factor for the Validation (qx I)
NORM_ VEC Normalization Vector (mxl) used to normalize the Modeling Set and Validation Set
PREDV ARVEC Prediction Variance Coefficients used to produce prediction intervals
PRI Pivot Vector (kx I) (lists test points selected for the Reduced Model)
RESMEAS Residual Errors (kxr) (columns correspond to the Reduced Measurement Data)
RESVAL Residual Errors (mxq) (columns correspond to the Validation Set)
SELECT_MOD _VECS Index of Modeling Set vectors for plotting (rx I)
SELECT_ VAL_EXTRACT Indices of vectors from the validation set used to create reduced measurement data
SIGMA_MM Standard deviation of the measurement noise for the Reduced Measurement Data (rx I)
SIGMA_MV Standard deviation of the measurement noise for the Validation Set (qx I)
STDHAT Nonmodel estimate of measurement noise (scalar)
S_SVD (Absolute values of) Singular values ofthe Modeling Set (nx I)
TOTAL_MEA_OUT_B Number of measurements from validation set that lie outside simultaneous prediction

intervals
TOTAL_MEA_OUT_I Number of measurements from validation set that lie outside individual prediction

intervals
Left Singular Matrix (mxn) computed from singular value decomposition (SVD) of
Modeling Set. Columns are linear combination of columns from Modeling Set. Full
Model is subset of this matrix.
Parameter Coefficient Vectors for Measurement Data (nxr)
Parameter Coefficient Vectors for Validation Set (nxq)
Response Predictions (mxr) (columns correspond to Reduced Measurement Data)
Response Predictions (mxq) (columns correspond to Validation Set)
Reduced Measurement Data (kxr) (measurements at only the reduced test points)

U_SVD

XHATMEAS
XHATVAL
YHATMEAS
YHATVAL
YMEAS

3.2. Important Variable Dimensions
k Number of test points selected for Reduced Model
m Number of test points in Full Model (candidate test points)
n Number of parameters selected for the model
p Number of Modeling Set vectors
q Number of Validation Set vectors
r Number of Reduced Measurement vectors
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3.3. HELP Toolbox Front Panel Parameters

Figure 3.3 shows the HELP Toolbox front panel displaying parameters from a particular modeling situation. The
Data Set parameters give the row and column sizes for a matrix of data loaded into the Toolbox (using the menu
selection [Data Sets/Load Data File/Modeling Set and Validation Set]) to be divided into a modeling set and a
validation set. The user is prompted to select which columns of the data set is to be separated from the modeling set
data and placed into a validation set.

The Modeling Set parameters show the row and column sizes for data placed into
the modeling set when data are loaded for modeling set and validation set or when
data are loaded for modeling set only.

The Validation Set parameters show the row and column sizes for data placed into
the validation set when data are loaded for modeling set and validation set or when
data are loaded for validation set only.

The Full Model parameters show the row and column sizes for the full model. A
full model can be created by algebraically manipulating the modeling set using
three sequential menu selections: (1) [Params and Test Pts/Modeling Set
Decomposition], (2) [Params and Test Pts/Select Number of Parameters], and (3)
[Params and Test PtslTest Point Selection/...]. Also, data can be loaded into the
Toolbox to be used as a full model using the menu selection [Data Sets/Load Data
File/Full Model].

The Rows-parameter under the Reduced Model label shows the number of test
points selected from the full model to be used for the reduced model. The test
points can be selected optimally using the menu selection [Params and Test Pts/Test
Point SelectionlPrediction Variance Optimization]. They can be selected manually
using the menus [Params and Test Pts/Test Point Selection/Test Point
Assignment/...]. Or they can be selected using a combination of optimally and
manually selected points (if, for instance, the user wants to select the points
optimally but force several additional points to be selected) using the menu
selection [Params and Test Pts/Test Point Selection/Combined Optimization and
Assignment]. The column size for the reduced model is always the same as the
column size for the full model.

The validation error statistics are produced by applying the validation set to the
model using the menu selection [Assess ModellValidate Model]. The Valid. Error
Stats parameters show the root mean square value, the maximum value, and the
minimum value of the residual errors. The residual errors equal the measurement
minus the prediction at each of the candidate test points.

Figure 3.3. HELP Toolbox
Parameter Display Panel

The DUT Error Stat RMS-parameter shows the root mean square value of the residual errors produced from
applying measurement data from a device under test (DUT) to the model. The residual errors for the DUT equal the
measurement minus the prediction at only the reduced test points. DUT measurement data can be loaded into the
Toolbox using the menu item [Data Sets/Load Data FilelReduced Measurement Data] or it can be artificially
produced by extracting the selected test points from one or more columns of the validation data using the menu item
[Data Sets/Load Data File/Extract Reduced Meas. from Validation].
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IV. Description of Toolbox Menus

Introduction to the Menus and Variables

The HELP Toolbox is a graphical-user-interface (GUI)-based software package for use with MATLAB@ that
facilitates the modeling and analysis required for testing and calibration of complex systems. High-dimensional
empirical linear prediction requires a large number of device data sets for a common device or system, with each
data set covering the identical measurement points, referred to as the candidate set of test points. (Note: Physical
and a priori models may be used in place of empirical models but it has been experimentally found that empirical
models are more robust.) The large number of data sets is termed the modeling set or training set. It is used to
construct a linear model, referred to as the system model. The modeling set must be collected externally and loaded
into the Toolbox. The modeling set is manipulated and operated upon algebraically within the Toolbox to produce
the device or system model. The modeling allows for characterization of the device or system at all points within
the candidate set of test points using measurements taken only at a subset of those candidate test points. Response
predictions can then be made at the full set of candidate test points based upon measurements at the subset of test
points. Various statistical analyses may be performed within the Toolbox to determine accuracy of the model,
confidence bounds, etc.

The HELP Toolbox menu operations function in a general sequential manner from left to right, and top down, across
the GUI window. The Toolbox is intended to be driven via the mouse or hotkeys with subsequent user-prompted
keyboard entries for appropriate input. There are seven main menu headings, each containing sub-menus. The
menus are, from left to right, Data Sets, Params and Test Pts, Assess Model, Quality Control, Plot, Help, and Exit.
Figure 4.1 displays the Toolbox window with its menus and display panel (with a blank application screen). The
panel displays various parameters relating to the user's current session of modeling and analysis. Some of the
parameters are the sizes of the data set loaded into or derived within the Toolbox, the modeling set, the validation
set, the full model, and the reduced model. The Toolbox panel also shows some error statistics obtained from
applying the model to the validation set and the device under test (DUT).

The software for the HELP Toolbox consists of a main program and various subroutines that are accessed from the
main program. Selection of a particular menu heading corresponds to execution of a section of code from the main
HELP Toolbox program. Within the section of code executed, various variables are created and operated upon. The
variables within the Toolbox code very often are mnemonic to the parameters they represent, unlike the variables
within the mathematical overview presented in section II. Table 3.1 presents the mapping from the variable names
in the mathematical overview to the variable names in the software.

1. Data Sets.

Data sets are used for many purposes within the HELP Toolbox. Typically, a set of empirical data in matrix form is
loaded into the Toolbox as a modeling set, sometimes called a training set, to be algebraically transformed into the
system model. Another matrix may be loaded into the Toolbox to serve as validation data (to test the model) once
the model has been developed. If the magnitudes of the data are not close in size, then yet another data set, in the
form of a vector, possibly consisting of tolerance data, may be loaded into the Toolbox to normalize the modeling
and validation sets. (Normalization can be critical for producing prediction intervals, i.e., predicted uncertainties,
that meet required specifications.) Additionally, variables created through operation of the Toolbox can be easily
saved to the computer disk via the Data Sets menu. The Toolbox can load and save files in both ASCII text format
and MATLAB binary format. MATLAB allows the loading of ASCII files with comma-, space-, or tab-delimited
data. Files that are saved in the ASCII format are space-delimited. The MATLAB binary format is much more
efficient and so the user may wish to use the binary format for larger data files. By convention, MATLAB binary
files should use the '.mat' extension.
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Table 4.1. Correspondence between Mathematical Overview Variables and Toolbox Variables

1.1. Load Data File.

This menu item allows data fIles in either MATLAB binary or ASCII text format to be loaded into the Toolbox
environment. The fIle must be assigned the status of one of the variables listed as options in the sub-menu (listed
numerically below as 1.1.1. through 1.1.8.). The front panel on the Toolbox window displays the sizes of the data
sets loaded into the Toolbox. Note that if data are loaded into the Toolbox for the modeling set and validation set
and some of the data are set aside for validation, then the displayed sizes of the modeling and validation sets should
add column-wise to equal the size of the data set displayed in the front panel. Note also that the full and reduced
models are used in combination to 'form' the system model used to characterize the device or instrument under
consideration. The rows of the reduced model correspond to the reduced set of test points which, when measured

4.3

Math Toolbox Description
A AFULL mxn linear system model (called the full model)

UI AFULL fIrst n columns (mxn) of U (A equals U1 during empirical modeling)
A ARED kxn reduced model matrix (called the reduced model)
A ATRAIN mxp matrix of training data (called the modeling set)
y AVAL mxq matrix of validation data (called the validation set)

ern) c root mean squares of residual errors (used to determine n)
e mxl device measurement errors (measured -true)

number of reduced test points selected for the model, i.e., m>k; generally selected
k k such that k is 2 to 5 times n
m m number of measurement points (referred to as test points)
n n number of parameters in the model
p p number of training data sets
J PRI kx 1 vector of reduced test points (called the pivot vector)
q q number of validation data sets

Q(n) q Q-Max value (used to determine n)
r r number of devices under test (DUTs)

RESMEAS kxr matrix of DUT errors (measured -predicted)
RESVAL mxq matrix of device errors (measured -predicted)

R mxn remainder term
S s pxp diagonal matrix of singular values

S SVD px 1 column vector of singular values
a STDHAT mx 1 estimate of the rms of the residual errors in the validation set
U U SVD mxp left singular matrix of orthogonal columns
VT v pxp right singular matrix

XHATMEAS nxr matrix of parameter vector estimates for the devices under test
XHATVAL nxq matrix of parameter vector estimates for the validation set

x nx1 true parameter vector (parameters are specifIcto a device)
x nx 1 estimate of the parameter vector

YHATMEAS kxr prediction of device responses for the devices under test
YHATVAL mxq prediction of device responses for the validation set

y YMEAS kxr matrix of (reduced) measured responses for the DUTs
y mx1 measured device response
y mx1 true device response
y mx1 estimate of the device response
y' kx 1 estimate of the device response at reduced test points



for a particular device, can be used with the system model to predict the response of the device at all of the candidate
test points contained in the full model. The sizes of all the data sets are inteITelated so that the sizes of the data sets
not specifically listed within the front panel of the Toolbox window may be known by the sizes of the listed
variables. In parentheses next to each menu heading below is listed the cOITesponding variable size.

For each of the sub-menu items below, a window will pop up prompting the user to state whether the file to be
loaded is a MATLAB binary file or an ASCII text file. (The user may cancel at this point in order to make this
determination.) Next, another window pops up asking for the name of the file to be loaded. Note that a MATLAB
binary file must be of the formfilename. mat, while an ASCII text file may have any extension or no extension.

1.1.1. Modeling Set (mxp) and Validation Set (mxq).

This menu item allows the data loaded from the selected file to be split by columns into two parts, a modeling set,
from which to build a model, and a validation set, to test the model. After selecting the file to be loaded, the user is
asked if some of the data are to be set aside for validation. If so, the user is asked whether the column indices are to
be selected via a file (containing a vector of indices) or manually by typing the desired indices into an input box.
The data file may contain 2-D or 3-D matrices.

To construct an empirical model from the modeling set, we assume that the modeling set that has been loaded is an
mxp matrix. Its columns are vectors of exhaustive measurements, one for each of the p devices in the modeling set.
The modeling set loaded into the Toolbox will be used to construct the system model. See section 2. Parameters and
Test Points.

1.1.2. Modeling Set Only (mxp).

This menu selection designates that all the data loaded into the Toolbox from the selected file will be used for the
modeling set. The modeling set can be manipulated algebraically to produce full and reduced models. The data file
may contain 2-D or 3-D matrices (as produced within MATLAB).

1.1.3. Validation Set Only (mxq).

This menu selection designates that all the data from the selected file will be used for model validation once full and
reduced models are obtained. The data file may contain 2-D or 3-D matrices (as produced within MATLAB).

1.1.4. Full Model (mxn).

This menu selection designates the data from the selected file to be assigned to the full model. A reduced set of test
points must subsequently be selected to form a reduced model.

1.1.5. Reduced Model (kxn).

This menu selection designates the data from the loaded file to be assigned to the Reduced Model. The user must
also load a Full Model into the Toolbox in order to make predictions on device behavior using the Toolbox.

1.1.6. Reduced Measurement Data (kxr).

Once Full and Reduced Models have been developed within or loaded into the Toolbox, measurements
cOITespondingto the reduced test points from the Reduced Model can be measured and loaded into the Toolbox and
used to predict the responses at the entire set of candidate test points. These data are refeITedto as Reduced
Measurement Data.

1.1.7. Normalization Vector (mxl).

In a typical modeling case, it is helpful to normalize the Modeling Set and Validation Set to the tolerances required
for the particular needs of the user. This step is especially true if different test points have different measurement
uncertainties. Assignment of data using this menu item allows a Normalization Vector to be loaded into the
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Toolbox for such a purpose. The user has the option of normalizing both the Modeling Set and the Validation Set or
either set separately (normally both sets should be normalized). Descriptors directly below the Modeling Set size
and Validation Set size on the front panel of the Toolbox indicate whether data has been normalized.

1.1.8. Extract Reduced Measurement from the Validation Set (rxn).

This option allows the user to artificially fabricate Reduced Measurement Data from the Validation Set. The user is
prompted to select which vectors from the Validation Set are to be used to fabricate the Reduced Measurement Data.
The user must have already loaded a Validation Set. Use of this option will write over any previously loaded
Reduced Measurement Data.

1.2. Clear Current Data.

This menu item clears the Toolbox of all current data previously loaded into the Toolbox or previously computed
within the Toolbox. It clears all global variables as well as the plot in the Toolbox Window and the parameter values
displayed on the front panel.

Note that many variables are created as global variables within the HELP Toolbox program so that they may be
passed between subroutines as the user progresses through the HELP modeling and analysis. The user should be
aware when creating global variables within the MATLAB Command Window that the names below are used by the
Toolbox and if changed could produce false modeling results.

Global Variables within the HELP Toolbox

ADAT
AVAL
BINT2VAL
IINT2VAL
INTI
NORM_VEC
RESVAL
SIGMA_MV
TOTAL_MEAS_OUT_I
YHATMEAS

AFULL
BINT1MEA
lINT 1MEA
INDV
INTIM
PREDVARVEC
SELECT MOD VECS- -
STDHAT
U SVD
YHATVAL

ARED
BINTIVAL
lINT 1VAL
INTB
NMFACTORM
PRI
SELECT_VAL_EXTRACT
S SVD
XHATMEAS
YMEAS

ATRAIN
BINT2MEA
IINT2MEA
INTBM
NMFACTORV
RESMEAS
SIGMA_MM
TOTAL_MEA_OUT_B
XHATVAL

The variables shown above are defmed in section 1.3. below and in a glossary in section 111.3.Some of the variables
are also described in Table 4.1 in the introduction to this section.

Additionally, a creative MATLAB user can make use of the global variables to access the Toolbox parameters
within the MATLAB programming environment to increase the analysis capabilities of the Toolbox. To access the
global variables, the user must enter a global statement within the MATLAB programming environment including
the variables of interest (see MATLAB documentation on global variables).

1.3. Save Variable.

This menu item allows variables created within the HELP Toolbox to be saved to the disk as ASCII text files. The
variables permitted to be saved and their corresponding filenames are listed below. In each case, a window pops up
in which the user may name the saved file. The default filename will appear in the filename block. The user may
type any name in place of the default name as well as select the desired directory in which to locate the saved file.
The user should take care to name/locate the file uniquely so that subsequent saves do not overwrite a needed file.

1.3.1. Modeling Set (atrain.txt) (mxp).

This menu item allows the user to save the Modeling Set to the computer disk. The Modeling Set is sometimes
referred to as training data.

-
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1.3.2. Validation Set (aval.txt) (mxq).

This menu item allows the user to save the Validation Set to the computer disk.

1.3.3. Full Model (afull.txt) (mxn).

This menu item allows the user to save the Full Model to the computer disk.

1.3.4. Reduced Model (ared.txt) (kxn).

This menu item allows the user to save the Reduced Model to the computer disk.

1.3.5. Reduced Measurement Data (ymeas.txt) (rxn).

This menu item allows the user to save the Reduced Measurement Data to the computer disk.

1.3.6. Pivot Vector (test points indices, prl.txt) (rxl).

This menu item allows the user to save the Pivot Vector to the computer disk. The Pivot Vector maps the reduced
test points back into the Full Model (and therefore defmes which points are to be measured for the device under test
(DUT».

1.3.7. Validation Parameter Coefficients (xhatval.txt) (nxq).

This menu item allows the user to save the Validation Parameter Coefficients to the computer disk. The parameter
coefficients for each vector in the Validation Set determine the contribution of each parameter in the model to the
predicted response of the device represented by that validation vector.

1.3.8. Measurement Parameter Coefficients (xhatmeas.txt) (nxr).

This menu item allows the user to save the Measurement Parameter Coefficients to the computer disk. The
parameter coefficients for each vector within the Reduced Measurement Data determine the contribution of each
parameter in the model to the predicted response of the measured device.

1.3.9. Validation Response Predictions (yhatmat.txt) (mxq).

This menu item allows the user to save the Validation Response Predictions to the computer disk. The Validation
Response Predictions are predicted responses at all candidate test points for each vector in the Validation Set, based
only upon knowledge of the reduced test points contained within the Validation Set for the particular device and the
Full and Reduced Models. The model does not use the knowledge of the remaining measurements for each device
contained within the Validation Set. See section 11.7.on page 2.7 and following for details.

1.3.10. Measurement Response Predictions (yhatmeas.txt) (mxr).

This menu item allows the user to save the Measurement Response Predictions to the computer disk. The
Measurement Response Predictions are predicted responses at all the candidate test points for each measurement
vector loaded, based upon the reduced test points represented in the Reduced Model. The Full and Reduced Models
are used to produce the predictions.

1.3.11. Validation Residual Errors (resval.txt) (mxq).

This menu item allows the user to save the Validation Residual Errors to the computer disk. The Validation
Residual Errors are differences between the measured and predicted responses at all points for each vector in the
Validation Set.
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1.3.12. Measurement Residual Errors (resmeas.txt).

This menu item allows the user to save the Measurement Residual Errors to the computer disk. The Measurement
Residual Errors are differences between the measured and predicted responses at the reduced test points for each
vector of measurement data.

1.3.13. Individual Validation Prediction Intervals (iintlval.txt,iint2val.txt).

This menu item allows the user to save the Individual Validation Prediction Intervals to the computer disk.
Individual Prediction Intervals provide a 95.45 percent bound for the predicted response at each test point produced
using the HELP Toolbox. A 95.45 percent bound is a bound for which each prediction point has a 95.45 percent
probability of falling within the upper and lower bound values. This corresponds to coverage of two standard
deviations (2-sigma) for a normal distribution. The default filename containing the "1" stores the upper bound and
the filename containing the "2" stores the lower bound.

1.3.14. Individual Measurement Prediction Intervals (iintlmea.txt,iint2mea.txt).

This menu item allows the user to save the Individual Measurement Prediction Intervals to the computer disk.
Individual Prediction Intervals provide a 95.45 percent bound for the predicted response at each test point produced
using the HELP Toolbox. A 95.45 percent bound is a bound for which each prediction point has a 95.45 percent
probability of falling within the upper and lower bound values. This corresponds to coverage of two standard
deviations (2-sigma) for a normal distribution. The default filename containing the" 1" stores the upper bound and
the filename containing the "2" stores the lower bound.

1.3.15. Simultaneous Validation Prediction Intervals (sintlval.txt,sint2val.txt).

This menu item allows the user to save the Simultaneous Validation Prediction Intervals to the computer disk.
Simultaneous Prediction Intervals provide a 95.45 percent bound for the predicted response at all test points
produced using the HELP Toolbox. A 95.45 percent bound is a bound for which there is a 95.45 percent probability
that none of the predicted points lies outside. This corresponds to coverage of two standard deviations (2-sigma) for
a normal distribution. The default filename containing the "1" stores the upper bound and the filename containing
the "2" stores the lower bound.

1.3.16. Simultaneous Measurement Prediction Intervals (sintlmea.txt,sint2mea.txt).

This menu item allows the user to save the Simultaneous Measurement Prediction Intervals to the computer disk.
Simultaneous Prediction Intervals provide a 95.45 percent bound for the predicted response at all test point produced
using the HELP Toolbox. A 95.45 percent bound is a bound for which all prediction points taken together have a
95.45 percent probability of falling within the upper and lower bounds. This corresponds to coverage of two
standard deviations (2-sigma) for a normal distribution. The default filename containing the "I" refers to the upper
bound and the "2" to the lower.

1.4. Orthogonalize Modeling Set.

This menu item is useful for assigning a specific set of model vectors to the Full Model and using empirical vectors
to augment the assigned vectors. For instance, if the user wanted to assign a set of Rademacher vectors to the Full
Model in order to model an Analog-to-Digital Converter (ADC), and augment the set of Rademacher vectors with
some measurement data taken trom the ADC, the user would load the set of Rademacher vectors into the Full Model
using the menu item [Data Sets/Load Data File/Full Model]. The user would then load the measurement data into
the Modeling Set using the menu item [Data Sets/Load Data FileIModeling Set Only]. The user would next
orthogonalize the Modeling Set to the Full Model using this menu item, Le., [Data Sets/Orthogonalize Modeling
Set]. The next step in the process would be to select parameters for the model using the menu item [Params and
Test Pts/Make Parameter Selection]. When the input box appears into which the user will enter the desired number
of parameters, the user must be sure the new vectors for the model are appended to the existing Full Model
consisting of the Rademacher vectors, by pressing the radio button labeled "Append".
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2. Parameters and Test Points.

This menu selection allows the user to mathematically manipulate the matrix of data referred to as the modeling set.
The user must produce a full model and a reduced model before he can predict device behavior. Together, the full
and reduced models are referred to as the system model because both are required to take a reduced set of device
measurements and predict device behavior at all candidate test points.

Selecting model parameters and test points corresponds to selecting the number of unknowns and the number of
equations, respectively, in a system of simultaneous linear equations. The user must fIrst determine how many
unknowns (model parameters) to use in the system of equations and then establish an appropriate number of
equations (test points) to accurately solve the system.

2.1. Modeling Set Decomposition.

This menu item performs the computations necessary for selecting the parameters for the system model. The
computations performed are also necessary to the algorithms that correspond to the parameter selection plots used to
help select parameters. Therefore, this menu item must be selected prior to attempting to use any of the parameter
selection plots and prior to selecting parameters or test points.

A singular value decomposition (SVD) is performed on the modeling set, Y. The SVD factors the modeling set
into three matrices, Y = USVT , where U is a matrix of orthogonal column vectors that span the same space as the
modeling set matrix, S is a diagonal matrix of singular values, and V is an orthogonal matrix that is not used by
the Toolbox. The singular values give a quantitative description of how much information from the modeling set is
contained in successive vectors of the matrix U. The singular values (and thus the columns of U) are in
decreasing order according to their contribution to the information contained in the modeling set.

2.2. Parameter Selection Plots.

This menu item allows the user to determine the number of parameters signifIcantly affecting device behavior. The
number of parameters selected becomes the number of columns in the full and reduced models. The user has several
parameter selection plots available (listed below) along with a plot of the singular values (in the Plot menu) in order
to make an appropriate parameter size selection. Selecting n parameters corresponds to assigning the fIrst n columns
of the matrix U (see Modeling Set Decomposition) as the full model.

2.2.1. Diagnostic Plots.

This menu item plots the Log of Eigenvalues (LEV) Plot, the RMS of Residual Eigenvalues Plot, and the Q-Max
Plot (see comments on each below), with a brief note to help in determining the number of parameters for the model.

In practice, the recommendations from the three plots are sometimes inconsistent or unclear. The Q-Max Plot will
usually give a maximum, but it may be too large. This may correspond to a fairly even decline in the RMS of
Residual Eigenvalues Plot and to the absence of an elbow in the LEV Plot. From numerical experiments, it appears
that not much can be gained by increasing the number of parameters in such a case. The recommendation then is to
choose the smallest number of parameters that provide sufficient accuracy in the prediction. There are a number of
other plots available in the Toolbox, but in an unclear situation they may just add to the confusion. The three plots
that are combined in 2.2.1. as well as others are described individually below.

2.2.2. Scree Plot (Eigenvalues).

The eigenvalues are the squares of the singular values (see Modeling Set Decomposition). A typical plot contains an
"elbow", i.e., a fairly steep decline up to a particular eigenvalue, followed by a flat part. It is recommended that the
user include all parameters up to and including the fIrst eigenvalue in the flat region.
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2.2.3. Log of Eigenvalues (LEV).

The LEV Plot is simply the log of the Scree Plot with similar selection characteristics. The LEV Plot may contain
an "elbow" as in the Scree Plot or it may have a "step" shape. In that case, the parameters up to and including the
bottom of the step should be selected.

2.2.4. Fraction of Variation Explained.

This plot shows the uaction of the cumulative variation explained with increasing parameter selections. The user
could use this plot to determine what percentage of information existing within the modeling set is contained in a
full model of a certain number of parameters. This plot can be used in conjunction with the Scree Plot to show what
percentage of information is "drowned out" by the noise.

2.2.5. RMS of Residual Eigenvalues.

This plot shows the root mean square of the residual eigenvalues. It allows the user to choose the number of
parameters such that the expected residuals at individual test points for new devices are sufficiently small. The user
can choose the number of parameters such that the plotted quantity is no greater than a predetermined required
uncertainty. The plot can alternatively be used to predict the effect of changing the number of parameters. The plot
will always indicate that increasing the number of parameters decreases the size of the residuals. However, as the
number of parameters grows large, the model may capture more noise.

2.2.6. Q- Max Plot.

This plot shows a statistical estimate for the dimension of the residuals of training data uom a model with n
parameters. The number of parameters selected should correspond to the maximum value of the plot or the smallest
value for which the plot reaches a plateau.

2.3. Select Number of Parameters

Once the user has used the Parameter Selection Plots to determine the desired number of parameters, selecting this
menu item produces a pop-up window in which the user can enter the desired number of model parameters.

2.4. Test Point Selection.

For a given number of model parameters, test points must be selected to solve the system of equations. Based upon
experience with empirical model building, the Toolbox authors suggest using a quantity of test points equal to two to
five times the number of model parameters. The test points can be chosen arbitrarily by the user or selected using
the prediction variance optimization routine described below.

2.4.1. Prediction Variance Optimization.

Optimally select test points to be included in the reduced model by computing the ratio of the variance of the
prediction to the variance of the measurement noise at all points and choosing the test point with the highest ratio
value to be included in the reduced model. This ratio will change after each additional test point so the ratio is
recalculated for each iteration until the desired reduced model size is established (see above theory).

2.4.2. Test Point Assignment.

This menu item allows the user to assign specific test points to the reduced model. The vector of the assigned test
points is referred to as the pivot vector.
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2.4.2.1. Assign Test Point File.

This menu item allows the user to load a file into the Toolbox environment to specify which of the candidate test
points are to be used in the reduced model. The file must contain a vector of indices, the largest of which must be
less than or equal to the number of candidate test points.

2.4.2.2. Manual Entry.

The user may use this menu item to manually type into a data entry window the indices of the test points to be
included in the reduced model. The largest entry must be less than or equal to the number of candidate test points.

2.4.3. Combined Optimization and Assignment.

This menu selection allows the user to use both optimally select test points and manually select test points. The first
n points selected optimally are selected using the QR factorization. Additional optimally selected test points are
selected using prediction variance optimization. Manually assigned points are selected in addition to the optimal
points and may repeat points selected optimally. Upon selection of this menu item, the user must choose how many
optimal points are to be selected and type into the input window the indices of the test points that are to be manually
assigned. Press the OK button and the Toolbox will produce the appropriate model.

3. Assess Model.
This menu item computes the response predictions for either the validation set or the reduced measurement data
(evaluating actual or simulated Device Under Test (DUT)). The validation error statistics and the DUT error
statistics are displayed on the front panel of the HELP Toolbox. Also, the Plot menu item will allow the user to
displaythe predictedresponse,actualresponse(forthecaseof validation),andresidualerrors. .

3.1. Validate Model.

Predict the response at all candidate test points in the validation set based on calculations using only the reduced
model points extracted from the validation set and compute the residual errors (measured response -predictions) at
all candidate test points for each vector/data set within the validation set.

3.2. Predict Calibration.

Predict the response at all unmeasured candidate test points and compute the residual errors (measured response -
predictions) for all measured points. Reduced measurement data for calibration can be loaded into the Toolbox
environment via the [Load Data] menu item.

3.3. Multiple Model RMS Error Results.

This menu item computes the rms of the residual errors produced for applying numerous models to the validation
set. The Toolbox will prompt the user for a vector of parameter sizes and a vector of test-point sizes which the user
is interested in testing. A matrix will be generated in which for each combination of parameter size and test-point
size, the corresponding rms of the residual error will be computed for each validation vector. Combinations with
more parameters than test points will be ignored by the software. The user may look at a plot of the results to
determine optimal model sizes with respect to rms error values. Note that this menu item may take many minutes or
even hours depending on the number of parameter and test point combinations and depending on the computer
system used.

4. Quality Control

Once device predictions are made using a constructed model, it is desirable to know the uncertainty associated with
the prediction. This menu item allows the user to compute prediction intervals around the predictions that provide
95.45 percent bounds (coverage of twice the standard deviation of a normal distribution).
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4.1.Individual Prediction Intervals.

This menu item allows the user to compute prediction intervals for each test point represented within the system
model.

4.1.1. Validation.

Compute an interval around each predicted response for the validation set that has a 95.45 percent statistical
probability of containing the measured value. The prediction intervals (and thus the model) can be tested by
checking to see what percentage of the measurements at points not included in the reduced model fall inside and
outside of the prediction intervals. At least 95.45 percent of the points should lie within the intervals. Note that this
check of the model and intervals assumes that the data in the modeling and validation sets are statistically
representative of the system under test.

4.1.2. Measurement.

Compute an interval around each response prediction that has a 95.45 percent statistical probability of containing the
measured value. The Reduced Measurement Data consist of measurements at a subset of all candidate test points
represented in the Full Model.

5.Plot

View plots of quantities previously created within or loaded into the HELP Toolbox.

5.1. Measurement Vectors.

Allows the user to select vectors from one of several sets to plot. The user must enter the indices corresponding to
the columns of the set that the user desires to plot. The user must enter an index or set of indices that are contained
within the data set or an error will occur. The user may choose to plot multiple vectors horizontally on top of one
another or vertically as separated columns. The user may also select between the plotting of normalized or
unnormalized data.

5.1.1. Modeling Set.

Plot columns from the modeling set.

5.1.2. Model Vectors.

Plot columns from the full model.

5.1.3. Validation Set.

Plot columns from the validation set.

5.1.4. Reduced Measurement Data.

Plot columns from the reduced measurement set.

5.2. Normalization Vector.

Plot the vector used to normalize the modeling set and validation set. This vector will typically be a tolerance or
uncertainty vector for the modeled device.
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5.3. Singular Values.

Plot the singular values produced from performing a singular value decomposition on the modeling set. This plot
gives an indication of the contribution of successive parameters to the model.

5.4. VaUdation Analysis.

This section allows the user to plot vectors computed from applying the model to the validation set. Prior to
plotting from the validation analysis sub-menu, the user must have created full and reduced models from data loaded
into the Toolbox or loaded them into the Toolbox directly, and then performed a validation of the model using a
validation set that was loaded into the Toolbox.

5.4.1. Response Predictions.

Plot the response predictions computed for the validation set. The user must select the validation vector(s) for which
the corresponding response predictions are to be plotted. The user has the option of plotting normalized or
unnormalized data.

5.4.2. Residual Errors Statistics.

When the user validates the model, error statistics are computed for the predictions made at the total candidate set of
test points based only on the reduced test points.

5.4.2.1. Residual Errors.

Plot the residual errors (measurement-prediction) computed for the validation set. The user must select the
validation vectors for which the corresponding residual error vectors are to be plotted. The user has the option of
plotting normalized or unnormalized data.

5.4.2.2. True Maximum Per Device.

Plot the maximum of the residual errors computed for each validation vector.

5.4.2.3. True Minimum Per Device.

Plot the minimum of the residual errors computed for each validation vector.

5.4.2.4. Absolute Maximum Per Device.

Plot the absolute maximum computed for each validation vector.

5.4.2.5. RMS Per Device.

Plot the root-mean-squares of the residual errors computed for each validation vector.

5.5. Analysis of DUT.

5.5.1. Response Predictions.

Plot the response predictions for the reduced measurement data. The user must select the measurement data vector
for which the corresponding response predictions are to be plotted. If measurement data for a single device under
test has been loaded into the Toolbox, the user must enter 1. The user may also select between plotting of
normalized or unnormalized data.
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5.5.2. Residual Error Statistics.

5.5.2.1. Predicted Residual Errors.

Plot the predicted residual error for the reduced measurement data. The user must select the measurement data
vector for which the corresponding predicted residual error vector is to be plotted. If measurement data for a single
device under test has been loaded into the Toolbox, the user must enter 1. The user may also select between the
plotting of normalized or unnormalized data.

5.5.2.2. RMS Per Device.

Plot the root-mean-squares of the predicted residual error for the reduced measurement data.

5.6. Parameter Coefficient Vector.

5.6.1. Validation.

Plot the parameter coefficient vector computed for the model for the particular validation vector selected by the user.

5.6.2. Measurement.

Plot the parameter coefficient vector computed for the model and particular reduced measurement vector selected by
the user.

5.7. Prediction Variance Vectors.

Plot the prediction variance vectors produced successively by selecting test points for the reduced model.
Successive vectors decrease in magnitude. The maximum value for all previously unselected test points corresponds
to the next test point selected in the optimal test point selection process.

5.8. Prediction Intervals.

5.8.1. Individual.

Plot 2-sigma (95.45 %) individual prediction intervals for a validation vector or a reduced measurement vector. The
user may plot the intervals either normalized or unnormalized and either separately or with the predictions added to
the prediction intervals. In all cases, the predictions are plotted to allow the user to view the coverage probability.
The exact coverage percentage may be obtained by derming the variable TOTAL_MEAS_OUT_I global within the
MATLAB command window. This gives the number of predictions not covered by the prediction intervals. To
obtain the percentage, take 1minus the ratio of this number to the total number of predictions and multiply by 100.

5.8.1.1. Validation.

Select the validation vector for which individual prediction intervals are plotted.

5.8.1.2. Measurement.

Select the measured data vector for which individual prediction intervals are plotted.

5.9. Multiple Model RMS Error Results.

Plot rms error results for the models tested with the menu item [AssessModel/Multiple Model RMS Error Results].

5.10. Control Plot Axes.

This menu item allows the user to control the range for the x- and y-axis settings.
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5.11. Hold Plot Axes.

Fix current plot axes so that plots may be placed on the same axes. The command does not freeze the axes, but
rather flexibly allows multiple plots on the same axes. Once Hold On is selected, Hold Off must be selected prior to
viewing a new plot separately.

5.11.1. Hold On.

This menu item causes all subsequent plots to be placed on the same axes.

5.11.2. Hold Off.

This menu item causes subsequent plots to clear previous plots before displaying.

5.12. Grid

Place a grid on the plot axes.

5.13. Clear Plot.

Clear the plot axes.

5.14. Print Figure.

Print a plot of the current figure.

5.15. Print Bitrnap of Entire Window.

Print a bitmap of the entire HELP Toolbox Window (everything below the menu labels):

6. Help.

Call the HTML navigator and the HTML help pages for the HELP Toolbox.

7. Exit.

Exit the HELP Toolbox.
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v. HELP ToolboxTutorial

1. Example: Modeling an Analog Instrument with an Empirical Model

To start the HELP Toolbox from within the MATLAB«>Command Window, type
>>help22

The High-dimensional Empirical Linear Prediction Toolbox window will appear. As you browse the
Toolbox, you will see the menu headings [Data Sets], [Params and Test Pts], [Assess Model], [Quality
Control], [Plot], [Help], and [Exit]. Each of these main menu items has corresponding submenus. (For the
sake of clarity and consistency, all references to menu labels are enclosed by square brackets.)

To begin using the HELP Toolbox, we must load some previously collected data into the Toolbox. Select the menu
item [Data Sets/Load Data File/Modeling Set and Validation Set].

You will be prompted to select the file format for the file you wish to enter.

Select MATLAB«>Binary Format (*.mat). Within the Load Data Window that pops up, change the folder directory
to C:\HelpData\792A (or where ever the data exist). Select the filename "m792_309.mat" by single-clicking the
filename and choosing the "Open" button or by double-clicking the filename.

You will see the size of the data file displayed as 309 rows and 126columns. This is referred to as a matrix
of size 309x 126. You will next be asked if you would like to assign some of the data for model validation.

Choose the "Yes" button. Then, within the prompt window, select the button labeled "Manually". Place your
cursor in the light blue box, click the mouse, and type "[101:126]" (without the quotes). Choose the "OK" button.

This tells the Toolbox to select the 10pt through the 126thvectors from the data set and assign them to the
validation set. You will see the sizes of the modeling and validation sets displayed as 309x 100 and
309x26, respectively. Notice underneath both the modeling set sizes and validation set sizes, there are text
objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Data Sets/Load Data File/Normalization Vector] in order to normalize the modeling and
validation sets to a calibration tolerance vector. Choose MATLAB«>Binary Format (*.mat). Change the folder
directory to C:\HelpData\792A. Select the filename "fluk_792.mat". Note that when the user selects MATLAB
Binary File type, the Toolbox looks specifically for *.mat files so the" .mat" extensions are not listed in the
directory window.

Another small window will appear asking if you would like to normalize the modeling and validation sets.

Normalize both the modeling and validation sets by choosing the "Both"button.
After choosing the "Both" button, you will notice the text object labels change to "Normalized". Any
subsequent normalization of the modeling and validation sets will not change this normalization flag so pay
attention to the normalization flag prior to using it.

Now that you have a modeling set, you are ready to build an empirical model. Keep in mind that the goal
is to build a model that characterizes the device or instrument of interest with as few test points as
necessary to achieve the accuracy and confidence levels desired.

Select the menu item [Params and Test Pts/Modeling Set Decomposition].
This performs a factorization of the modeling set so that the column dimension of the model may be
reduced.

Next, select the menu item [Params and Test Pts/Parameter SelectionPlots/Diagnostic Plots].
The plots shown within the Toolbox give some graphical information helpful in determining the desired
number of parameters for the model. The interpretation of these plots is discussed in the section III.
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Description of Toolbox Menus and Variables. The Toolbox window with the plots displayed is shown in
Figure 5.1. Next, we will select 20 parameters for the model.

Determining the desired number of parameters for a model can depend on the user's defmition of an
acceptable error level for the device under test. It is often beneficial to construct many models with
differing numbers of model parameters and look at the resulting errors. Next we consider the effects of
varying the number of test points selected for the model. A general guideline is to select test points totaling
between two and five times the number of parameters chosen. Having an overdetermined system (more
test points than parameters) helps to reduce the measurement noise and flag errors in the model and/or in
the device under test. Given that there must be significantly more test points than model parameters,
adding additional parameters to the model will require a greater number of test points. Since reducing the
number of test points is the means by which the cost of testing is lessened, this reduction in model size
must be weighed with the user's error requirements.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click on the
blue area of the input box, type "20", and press the "OK" button.

Notice on the front panel that a full model of size 309x20 has been created.

The next step is to choose a set of test points for the model so select the menu item [Params and Test Pts/Test Point
SelectionlPrediction Variance Optimization]. An input box containing a slider will appear. Enter the value "80"
into the blue area showing the slider value or move the slider until "80" appears, and press the "OK" button.

You have just selected 80 test points creating a Reduced Model of size 80x20. Notice that the number of
rows for the Reduced Model displays "80" on the front panel.

Next validate the model by selecting the menu item [AssessModellValidate Model].
Notice that the Validation Error Statistics are filled in on the front panel. Recall that you set aside some of
the initial data for validation. This portion of the data was not used in creating the model.

Plot the first vector in the Validation Set using the menu item [Plot/MeasurementVectors Nalidation Set]. Click on
the blue area, enter "1" to select the first validation vector, and press the "OK" button. Next we want to plot the
predicted response for the fIrst vector in the Validation Set right on top of the present plot so hold the current axes in
place by selecting [Plot/Hold Plot Axes/Hold On]. Then select [PlotNalidation AnalysislResponse Predictions],
enter "1" in the blue area (because we want the fIrst vector again), and press the "OK" button. Plot the Residual
Errors on the same plot by selecting [PlotNalidation AnalysislResidualError StatisticsIResidualErrors]. Select
[Plot/Hold Plot Axes/Hold Oft] to free the plot axes for later plots.

This plot now shows the set of measurements represented in the fIrst validation set, the predictions based
on measuring only the 80 test points selected, and the residual errors for those predictions. Figure 5.2
shows an image of the Toolbox window with all its parameters displayed on the front panel and the plots
displayed in the graph portion of the window.

Suppose you want to determine whether the model accurately characterizes a validation device. This
determination can be made using prediction intervals.

Compute prediction intervals by selecting the menu item [Quality ControllIndividual Prediction
IntervalsN alidation].

Plot the prediction intervals for the first validation set using [Plot/PredictionIntervalslIndividuallValidation]. Click
in the blue area, type a "1" and press the "OK"button. Select [Plot/Control Plot Axes], change the x-axis range to
[0 50], and press the "Apply" button.

The prediction intervals can be seen to be about plus and minus 20 percent of the tolerance (normalization
vector) about the predictions. Figure 5.3 contains a picture of the intervals with the modified x-axis.
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Figure 5.1. Diagnostic Plots (Determining Number of Model Parameters)
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Figure 5.2. Measurement, Prediction, and Residual Error.
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Figure 5.3. Prediction Interval with Plot Axes Modified.



The errors produced from applying the model to the validation set may be observed using any of the menu items
under the label [Plot/Validation Analysis/...].

The previous model was constructed using arbitrary selections from the data for various parameters, such
as modeling and validation set divisions, model parameters, and test points. Next, we will construct a
model using statistical and engineering criteria for making such selections, as required to properly apply
the HELP approach. The modeling and validation sets will be selected according to time of measurements
so as to place broad parameter variability in both sets. The number of parameters will be varied to
investigate the errors produced over varying numbers of model parameters.

Select [Data Sets/Clear Current Data] from the Toolbox menu. Notice that the entire plot portion of the window is
cleared and all parameter listings in the front panel of the window are set to zero. Additionally, the normalization
flags for the modeling and validation sets are reset to "Unnormalized". Now reload the same data set using [Data
Sets/Load Data File/Modeling Set and Validation Set]. Select MATLAB Binary Format (*.mat) for the type of file
to be loaded. Find the file under C:\HelpData\792a\M792_309.mat. Again, recall that all ".mat" extensions will be
hidden because the Toolbox is looking specifically for these files. Select the filename "m792_309.mat" by either
double clicking the filename or choosing the "OK" button.

You will see the size of the data file displayed as 309x 126. Next we will assign a more appropriate portion
of the data for model validation than previously assigned.

Choose the "Yes" button. Then, within the prompt window, select the button labeled "Manually". Place your
cursor in the light blue box, click the mouse, and type "[1:5:126]" (without the single quotes)(square brackets
indicate a vector or matrix and may be omitted if no comma is needed to separate elements). Choose the "OK"
button.

This tells the Toolbox to separate every fifth vector from 1through 126 from the data set and assign it to
the validation set. You will see the sizes of the modeling and validation sets displayed as 309x 100 and
309x26, respectively. Again, notice underneath both the modeling set size and validation set size, there are
text objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Data Sets/Load Data File/Normalization Vector] in order to normalize the modeling and
validation sets to a calibration tolerance vector. Choose MATLAB Binary Format (*.mat). Change the folder
directory to C:\HelpData\792a. Select the filename "fluk_792.mat" either by selecting the file and clicking on the
"OK" button or double-clicking the filename.

Normalize both the modeling and validation sets by choosing the "Both" button.
After choosing the "Both" button, you will notice the text object labels change to "Normalized".

Select the menu item [Params and Test Pts/Modeling Set Decomposition].
This performs a factorization of the modeling set so that the column dimension of the model may be
reduced.

Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].
The plots shown within the Toolbox give graphical information helpful in determining the desired number
of parameters for the model.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click on the
blue area of the input box, type "25", and press the "OK" button.

Notice on the front panel that a full model of size 309x25 has been created.

Now select the menu item [Params and Test Pts/Test Point SelectionlPrediction Variance Optimization]. An input
box containing a slider will appear. Enter the value "80" into the blue area showing the slider value or move the
slider until "80" appears, and press the "OK" button.

You have just selected 80 test points creating a Reduced Model of size 80x25.
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Next validate the model by selecting the menu item [AssessModellValidate Model].
Notice that the Validation Error Statistics are filled in on the front panel. (Recall that you set aside some of
the initial data for validation.)

Note that the RMS, Max, and Min for the residual errors are 0.041152, 0.50888, and
-0.21042, respectively.

Now, look at the true maximum, true minimum, absolute maximum, and rms of the residual errors from the
validation set using the menu item [Plot/Validation AnalysislResidualError Statistics/...]. Next hold the plot axes
fixed and plot all the plots on top of each other for comparison and contrast by selecting [Plot/Hold Plot Axes/Hold
On] after the first plot. Remember to select [Plot/HoldPlot AxesIHoldOft] afterwards to release the plot axes. The
Toolbox window containing these plots is shown in Figure 5.4.

Next, create reduced measurement data from the validation set using [Data SetsILoadData File/Extract Reduced
Meas. from Validation]. Click in the blue text field, type "1", and hit "OK". Another window will pop up to make
sure you want to overwrite any existing reduced measurement data. We have not yet assigned any reduced
measurement data... hit the "OK" button. Predict the measurement response using [Assess ModellPredict
Calibration]. Note the DUT Error Stat on the front panel contains a value. Take a look at the measurements by
selecting [PlotlMeasurement VectorslReduced Measurement Data]. Click on the mouse in the blue area, type "1"
(there is only one reduced measurement vector), and press the "OK" button. Hold the plot axis using [Plot/Hold
Plot AxeSIHoldOn]. Plot the predicted response using [Plot/AnalysisofDUTlResponse Predictions]. Click on the
blue text filed, enter "1", and hit "OK". The actual measurements are shown as light blue circles and the predictions
are displayed as a red curve. Plot the predicted residual errors using [Plot/Analysis of DUTlResidual Error
Statistics/Predicted Residual Errors]. Click in the blue text field, type "1", and hit "OK". The entire window
containing these plots is shown on the following page. Select [Plot/Hold Plot AxesIHold Off] to release the plot
axes. Figure 5.5 shows the Toolbox window containing the plot created.

Now go back and create a model of size 80x32 and compare the residual statistics.

Select [Params and Test Pts/Select Number of Parameters]. Enter "32" in the blue area. Be sure to check the
"Replace" button within the parameter selection box so that instead of appending vectors to the present model, a
new model is created. Note on the front panel that the Reduced Model row-size, the Valid. Error Stats; and the
DUT Error Stat are all set to zero, indicating that a new reduced model must be selected. To choose a new set of
reduced test points, select the menu item [Params and Test Pts/Test Point SelectionlPrediction Variance
Optimization]. An input box containing a slider will appear. Move the slider until the value "80" appears or enter
"80" into the blue text-input area. Then press the "OK" button.

You have just selected 80 test points creating a reduced model of size 80x32.

Next, validate the model using [Assess ModellValidate Model].
Now the RMS, Max, and Min are 0.040057, 0.51302, and -0.21188, respectively. The changes in the RMS
(slight decrease), Max, and Min are all negligibly small.

Next, create reduced measurement data from the validation set using [Data SetsILoadData File/Extract Reduced
Meas. from Validation]. Click in the blue text field, enter "1", and hit "OK". Again, you will be asked if you are
sure you want to overwrite already-existing reduced measurement data. Hit the "OK" button. Predict the
measurement response using [Assess ModellPredict Calibration]. Again, try plotting the reduced measurement
vector, the predicted response, and the predicted residual errors using [PlotlMeasurementVectorslReduced
Measurement Data] and [Plot/Analysis ofDUT/...].

Repeat the procedure with 40 model parameters and 80 test points. Increasing the model size to 80x40 produces
RMS, Max, and Min of 0.038099, 0.49591, and -0.21158, respectively. The RMS error value continues to decrease,
but very slowly. Next, select the menu item [Params and Test Pts/Parameter Selection Plots/Diagnostic Plots].

5.7



VI

\0

Figure 5.5. Reduced Measurement, Prediction, and nUT Residual Errors.



These plots give graphical information to enable the user to determine the desired number of parameters
for the model. We will choose 32 parameters for the model and investigate what happens when the
number of reduced test points is varied.

Select the menu item [Params and Test Pts/SelectNumber of Parameters]. An input box will appear. Click on the
blue area of the input box and type "32". Remember to select the "Replace" button instead of "Append" so that we
create a new model. Press the "OK" button. Next, select the menu item [Params and Test Pts/Test Point
SelectionlPrediction Variance Optimization]. An input box containing a slider will appear. Enter the value "70"
into the blue area showing the slider value or move the slider until "70" appears, and press the "OK" button.

The Toolbox front panel should display the full model size as 309x32 and the number of rows for the
reduced model as 70.

Next validate the model by selecting the menu item [Assess ModellValidate Model].

Note that the RMS, Max, and Min for the residual errors are 0.040624,0.51887, and
-0.20719, respectively.

Now, look at the validation analysis plots using the menu item [PlotlYalidationAnalysis/...]. Again, try holding on
the plot axis to place the plots on top of each other for comparison and contrast by selecting [Plot/Hold Plot
Axes/Hold On] after the ftrst plot. Remember to select [Plot/HoldPlot Axes/Hold Oft] before proceeding to a
different set of plots.

Take a look at the measured values (validation) and prediction on the same plot. Select [Plot/Measurement
VectorNalidation Set]. Enter a "1" in the blue area. Select [Plot/Hold Plot Axes/Hold On] to ftx the plot axes.
Select [PlotIYalidation Analysis/Response Predictions] and enter a "1" in the blue area. Select [PlotIYalidation
Analysis/Residual Error Statistics/Residual Errors] and enter a "1" in the blue area. You have plotted the
measurements, predictions, and residual errors for the ftrst validation vector based on a model of size 70x32.

Now create reduced measurement data from the validation set using [Data Sets/Load Data File/Extract Reduced
Meas. from Validation]. Click the mouse in the blue text fteld, enter "1" to use the ftrst validation vector, and hit
the "OK" button. This operation extracts the 70 selected test points from the ftrst vector in the validation set and
uses it as a device under test. Selecting the menu item [AssessModellPredict Calibration], the Toolbox predicts the
response at all 309 points using only knowledge of the 70 selected measurement points. Now plot the reduced
measurement vector using [Plot/MeasurementVectors/Reduced Measurement Data]. Click the mouse in the blue
text fteld, enter "1", and click on the "OK" button. Fix the plot axes using [Plot/Hold Plot Axes/Hold On]. Now
plot the predicted response for the DUT using [Plot/AnalysisofDUT/Response Predictions]. Click in the blue text
fteld, enter "1", and hit "OK". The light blue circles are the actual measurements at the 70 selected points and the
red curve is the predicted device response at all 309 points based on knowledge of only the 70 measurements. Plot
the predicted residual errors for the DUT using [Plot/Analysisof DUT/Residual Error StatisticslPredicted Residual
Errors]. Again, click in the blue text fteld, enter "1" (there is only one DUT vector), and hit "OK". The Toolbox
window containing plots of the reduced measurement data, the predicted response, and the predicted errors is shown
in Figure 5.6.

Now go back and select 80 test points for a reduced model of size 80x32 and compare the residual
statistics with those of the 70x32 model.

Select [Params and Test Pts/Test Point SelectionlPredictionVariance Optimization]. Enter "32" in the blue area.
Next, validate the model using [Assess ModellValidate Model].

Note that the RMS, Max, and Min for the residual errors are 0.040057, 0.51302, and
-0.21188, respectively. The RMS and Max values have improved only slightly.
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Figure 5.6. Reduced Measurement, Prediction, and nUT Residual Errors.



Again, try all the plotting combinations for the residual errors using [PloWalidation Analysis/Residual Error
Statistics/. . .]. Plot a validation vector with its response prediction and residual error.

Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].
Click in the blue text field, enter "1", and hit "OK". Hit "OK" again. Predict the measurement response using
[Assess Model/Predict Calibration]. The RMS of the predicted errors is displayed on the front panel as 0.037182
which is comparable to the value of 0.040057 for the RMS of the errors for the validation set.

Next, select 90 test points test points for the model using [Params and Test Pts/Test Point SelectionlPrediction
Variance Optimization]. Validate the model using [Assess ModellValidate Model]. Increasing the model size to
90x32 produces RMS, Max, and Min of 0.039182, 0.51244, and -0.20298, respectively. The RMS error value has
decreased with more test points. Again, create a reduced measurement vector using [Data Sets/Load Data
File/Extract Reduced Meas. from Validation], predict the calibration using [Assess ModellPredict Calibration], and
check out the error statistics. Note that the RMS of the predicted residual errors for the DUT is 0.039039.

Try 120test points. The RMS, Max, and Min are now 0.037744, 0.52174, and -0.20067, respectively. Look at the
residual errors for the validation set using [PloWalidation Analysis/. . .]. Create reduced measurement data from the
first column of the validation set using the menu item [Data Sets/Load Data File/Extract Reduced Meas. from
Validation]. Enter "1" in the blue text field and press the "OK" button. A prompt-window will appear to confirm
the overwrite of any pre-existing Reduced Measurement Data. Press "OK" again. Perform mathematical analysis
on the reduced measurement data using the menu item [AssessModellPredict Calibration]. The RMS of the
predicted residual errors for the DUT is 0.044293.

Now try using 309 test points (the complete set). The RMS, Max, and Min of the residual errors for the validation
set are now 0.035487, 0.42446, and -0.20529, respectively. The residual errors continue to decrease with the
addition of more test points. Now create reduced measurement data using [Data Sets/Load Data File/Extract
Reduced Meas. from Validation]. Note that this is theoretically not reduced measurement data since all points are
included in the model. There are no savings in measurements with this model!!! The RMS of the predicted residual
errors is 0.04446.

Select the entire validation set as the reduced data set by using [Data Sets/Load Data File/Extract Reduced Meas.
from Validation]. Click in the blue area and enter "1:26" to select all validation vectors, and press the "OK" button
twice. Then evaluate all the vectors by selecting [Assess ModellPredict Calibration]. Notice that the DUT Error
Stat value is 0.035487, identical to the Valid. Error Stats RMS value. This should be the case since the calculation
used the entire data set in both analyses.

2. Example: Modeling a to-Bit Analog-to-Digital Converter with Empirical and Mixed Models

To start the HELP Toolbox from within the MATLAB@Command Window, type
»help22
The High-dimensional Empirical Linear Prediction Toolbox window will appear. As you browse the
Toolbox, you will see the menu headings [Data Sets], [Params and Test Pts], [Assess Model], [Quality
Control], [Plot], [Help], and [Exit]. Each of these main menu items has corresponding submenus. (For the
sake of clarity and consistency, all references to menu labels are enclosed by square brackets.)

To begin using the HELP Toolbox, load some previously collected data into the Toolbox. Select the menu item
[Data Sets/Load Data File/Modeling Set and Validation Set].

You will be prompted to select the file format for the file you wish to enter.

Select MATLAB@Binary Format (*.mat). Within the Load Data Window that pops up, change the folder directory
to C:\Help2Data\inllO. Select the filename "Adcl0.mat" by single-clicking the filename and choosing the "Open"
button or by double-clicking the filename.
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The Toolbox is looking for *.mat files so the .mat extension will not appear within the directory menu.
You will see the size of the data file displayed as 1024rows and 89 columns. This is referred to as a matrix
of size I024x89. You will next be asked if you would like to assign some of the data for model validation.

Choose the "Yes" button. Then, within the prompt window, select the button labeled "Manually". Place your
cursor in the light blue box, click the mouse, and type "[3:3:89]" (without the single quotes). Choose the "OK"
button.

This tells the Toolbox to select every third vector from three through 89 from the data set and assign them
to the validation set. You will see the sizes of the modeling and validation sets displayed as I024x60 and
I024x29, respectively. Notice underneath both the modeling set sizes and validation set sizes, there are
text objects labeled "Unnormalized". This informs the user that neither matrix has been normalized.

Select the menu item [Params and Test Pts/Modeling Set Decomposition].
This performs a factorization of the modeling set in order to reduce the column dimension of the model.

Next, select the menu item [Params and Test PtslParameter Selection Plots/Diagnostic Plots].
The plots shown within the Toolbox give graphical information helpful in determining the desired number
of parameters for the model. Figure 5.7 shows the Toolbox window containing these plots. All three
diagnostic plots are in agreement that about 8 to 12parameters should model this data. Intuition might tell
us that we need at least 10 parameters. Try 8 first.

Select the menu item [Params and Test Pts/Select Number of Parameters]. An input box will appear. Click the
mouse in the blue text field of the input box, type "8", and press the "OK" button.

Notice on the front panel that a full model of size I024x8 has been created.

Next, select the menu item [Params and Test Pts/Test Point SelectionlPrediction Variance Optimization]. An input
box containing a slider will appear. Enter the value "40" into the blue area showing the slider value or move the
slider until "40" appears, and press the "OK" button.

You have just selected 40 test points to go along with the 8 parameters, for a 40x8 Reduced Model.

Next validate the model by selecting the m~nu item [Assess Model/Validate Model].
Notice that the Validation Error Statistics are filled in on the front panel. The RMS, Max, and Min for the
residual errors are 0.021283,0.096661, and -0.083969, respectively.

Now, look at the true maximum, true minimum, absolute maximum, and rms of the residual errors from the
validation set using the menu item [PlotIValidation AnalysislResidual Error Statistics/...]. Try holding on the plot
axis and plotting all these plots on top of each other for comparison and contrast by selecting [PlotIHold Plot
Axes/Hold On] after the first plot. Remember to select [PlotIHold Plot Axes/Hold Off] before trying a new plot.

Figure 5.8 shows the Toolbox window containing these plots. Compare the statistics contained within the
front panel of the Toolbox window with the values plotted.

Take a look at the measurement (validation) and prediction on the same plot. Select [Plot/Measurement
VectorNalidation Set]. Select the "Unnormalized" button then click the mouse in the blue text area, enter a "1", and
select the "OK" button. Select [PlotIHold Plot Axes/Hold On] to fix the plot axes. Select [PlotlValidation
AnalysislResponse Predictions], select the "Unnormalized" button, click the mouse in the blue text area, enter a "1",
and select the "OK" button. To add the residual errors to the same plot, select [PlotlValidation AnalysislResidual
Error StatisticslResidual Errors], select the "Unnormalized" button, click in the blue text area, enter a "1", and press
"OK". Remember to select [PlotIHold Plot Axes/Hold Off] prior to creating any new plots.

You are looking at the measurements and predictions for the first validation vector based on a model of
size 40x8. If the user does not selects the "Unnormalized"button when plotting any of the parameters, the
Toolbox will inform the user that the data has not been normalized and that unnormalized data will be
plotted.
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Figure 5.7. Diagnostic Plots Showing Parameter Information.
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Figure 5.8. Max, Min, Absolute Max, and RMS of Residual Error.



Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].
Click the mouse in the blue text field, enter "1", and press the "OK" button. Again, press the "OK" button, this time
to allow overwrite of data (no data presently exists to overwrite). Predict the measurement response using [Assess
ModellPredict Calibration]. Take a look at the measurements by selecting [PlotlMeasurement VectorslReduced
Measurement Data]. Click the mouse in the blue text field, type "1" (there is only one reduced measurement
vector), and press the "OK" button. Hold the plot axis on using [Plot/Hold Plot Axes/Hold On]. Plot the predicted
response using [Plot/DUT AnalysislResponse Predictions]. Click on the blue text field, enter "1", and press "OK".
Plot the predicted residual errors produced from applying the model to the reduced measurement data on the same
axes with the menu item [Plot/DUT AnalysislResidual Error Statistics/PredictedResidual Errors]. Again, click on
the blue text field, enter "1", and hit "OK". Remember to select [Plot/Hold Plot Axes/Hold Off] prior to the next
plot.

The light blue circles are the actual measurements at the 40 selected test points. The red curve contains the
predicted responses at all 1024points. The light blue circles are the predicted residual errors at the 40
selected points. Figure 5.9 shows the Toolbox window containing these plots. Now go back and create a
model of size 40xl 0 and compare the residual statistics.

Select [Params and Test Pts/Select Number of Parameters]. Enter "10" in the blue area. Be sure to check the
"Replace" button within the parameter selection box so that instead of appending vectors to the present model, a
new model is created. Select 40 test points for the model using [Params and Test Pts/Test Point SelectionlPrediction
Variance Optimization]. Enter 40 in the blue text field and hit "OK". Next, validate the model using [Assess
ModellValidate Model].

Note that the RMS, Max, and Min for the residual errors are 0.02095, 0.082252, and -0.084122,
respectively. The RMS and Max values decreased but the Min actually became larger in absolute terms.

Again, try plotting the residual errors in all forms using the menu item [PloWalidation AnalysislResidual Error
Statistics/. . . ].

Next, create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].
Click the mouse in the blue text field, enter "1", and select the "OK" button. Another window will appear that asks
the user to verify the overwrite of any existing reduced measurement data. Select the "OK" button. Predict the
measurement response using [Assess ModellPredict Calibration].

The RMS value of the predicted errors is displayed on the front panel as 0.015105.

Repeat the procedure with 12 model parameters and 40 test points. Increasing the model size to 40x 12 produces
RMS, Max, and Min of 0.021253, 0.080644, and -0.086893, respectively.

The RMS error value has increased in this case so that more model vectors is not better. The model is now
including more noise per parameter vector than true information.

Create a reduced measurement vector using [Data Sets/Load Data File/Extract Reduced Meas. from Validation].
Click the mouse in the blue text field, enter "1", and select the "OK"button. Next check out the error statistics.
Note that the RMS of the predicted residual errors for the DUT is 0.015547, which is comparable to the RMS of the
error for the validation set.

Now that several empirical models have been built and tested, we shall build and test a mixed model. The
normal empirical modeling procedure takes many empirical vectors and creates a model of linear
combinations of all or nearly all of the vectors in the modeling set. This approach cannot be used if the
user wants to evaluate a particular vector corresponding to a physical or apriori characteristic of a device.
In this case, the physical or a priori vector or vectors of interest are assigned to the full model. The same
modeling set is then used to augment the full model according to the normal empirical modeling procedure.

Load a full model (previously created and located on the computer disk) into the Toolbox by selecting [Data
Sets/Load Data FileIFull Model]. Press the button labeled "MATLAB Binary Format (*.mat)". Change the folder
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Figure 5.9. Max, Min, Absolute Max, and RMS of Residual Error.



directory to C:\HelpData\lnllO, choose the file named "radIO.mat",and press the "OK" button. (Note that the .mat
extension does not appear in the directory menu.)

The front panel now displays the full model size as 1024x10.

Plot the full model using [PlotlMeasurementVectors/Model Vectors]. Click on the blue area in the window that
appears and enter [1:10], press the "Vertical" button and the "Unnormalized" button and then press the "OK" button.
Do not plot the test points on this plot (they do not correspond to the new model). You will see the first 10 vectors
from the set referred to as Rademacher vectors. Notice that the last few vectors are difficult to view at the current
axis resolution. To get a better view of the last few vectors select [Plot/Control Plot Axes], change the x-axis range
to [0 16]and the y-axis range to [0200] in the window that appears, and press the "Apply" button and then the
"Close" button.

Figure 5.10 shows the model vectors as plotted in the Toolbox window. The set of Rademacher vectors is
a set of orthonormal vectors that characterize binary behavior. We are going to orthogonalize the
(empirical) modeling set to the Rademacher vectors in the full model and augment the model.

Select the menu item [Data Sets/Orthogonalize Modeling Set]. Hit the "OK" button in the window that appears.
The modeling set has now been orthogonalized to the full model. This changes the modeling set! If the
user desires to perform any additional mixed modeling, the full model must be reloaded into the Toolbox.
If the user wants to perform additional empirical modeling, the modeling set must be reloaded and all
HELP steps must be followed.

Select [Params and Test Pts/Modeling Set Decomposition] and then [Params and Test Pts/Select Number of
Parameters]. Click in the blue area, enter "6", (make sure the "Append" button is selected,) and press the "OK"
button.

This sequence adds six linear combinations of empirical vectors to the Rademacher vectors to form a
mixed model of size 1024x16.

Select 40 test points for the model using the menu item [Params and Test Pts/Test Point Selection/Prediction
Variance Optimization]. Enter 40 into the blue text field and press the "OK" button.

The front panel in the Toolbox window displays the full model size as 1024rows and 16 columns and the
number of reduced rows as 40.

Validate the model using [Assess ModellValidate Model].
Note the error statistics that are displayed in the front panel. The RMS, Max, and Min of the residual
errors are 0.02095, 0.085391, and -0.083079, respectively.

Look at the residual error plots using [PloWalidation AnalysislResidual Error Statistics/. ..].

Create reduced measurement data using [Data Sets/Load Data File/Extract Reduced Meas. from Validation]. Click
in the blue text field, enter "I ", and hit the "OK" button. Another window will appear asking the user to verify the
overwrite of any existing reduced measurement data. Hit the "OK" button. Predict the measurement response using
the menu item [Assess ModellPredict Calibration].

The front panel displays the RMS of the predicted residual error as 0.015228.

Plot the reduced measurement data using [PlotlMeasurementVectorslReduced Measurement Data]. Hold the plot
axes using [Plot/Hold Plot Axes/Hold On]. Plot the predicted response using [Plot/Analysis of DUTlResponse
Predictions]. Click on the blue area, type "I ", and press the "OK" button. Use [Plot/Control Plot Axes] to get a
better look at how the predictions line up with the measurements.

Construction and testing of several model sizes is recommended in order to evaluate the decreased errors
against the increased measurement costs as more test points are required. Table 5.1 shows the RMS, Max,
and Min residual error sizes for the various models that have been constructed thus far as well as a 40x 13
mixed model created with the same ten Rademacher vectors fixed in the full model. The user must reload
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Figure 5.10. Model Vectors (Rademacher Vectors).



the full model to produce this second mixed model. However, the user must NOT reselect [Data
Sets/Orthogonalize Modeling Set]. Selecting this menu item changes the modeling set prior to construction
of the model, and the same model is not produced as if the user had started from scratch and produced a
40x 13 mixed model. Rather, the user should proceed to the menu item [Params and Test Pts/Modeling Set
Decomposition]. If the sequence is confusing, reload all data sets and begin again. Note that the 40x 13
mixed model produces much smaller errors than the 40x 16mixed model. This is because most of the
information contained in the empirical data set is contained within the set of ten Rademacher vectors and
going beyond three additional empirical vectors adds predominantly noise to the model.

Table 5.1 Error Statistics for Several Models

The Toolbox contains additional functions helpful in determining the appropriateness of a particular model.
The [Quality Control] menu heading allows the user to compute individual and simultaneous prediction
intervals for either the validation set or, more importantly, the device under test. The Toolbox computes 2-
sigma prediction (uncertainty) intervals for all points that are predicted.

5.20

Statistics Empirical Models Mixed Models
Modl Size 40x8 40xl0 40x12 40x16 40x 13
Val RMS 0.021283 0.020950 0.021253 0.020950 0.020277
Val Max 0.096661 0.082252 0.080644 0.085391 0.092211
Val Min -0.083969 -0.084122 -0.086893 -0.083079 -0.094547

DUT RMS 0.015105 0.015547 0.015228 0.013931



----

VI. References

1. r. W. Anderson, Estimating Linear Statistical Relationships, Ann. Stat. 12, pp. 1-45, 1984.

2. G. H. Golub, C. F. Van Loan, Matrix Computations,2nd edition, Johns Hopkins University Press, Baltimore,
1989.

3. J. E. Jackson, A User's Guide to Principal Components, John Wiley & Sons, New York, 1991.

4. G. N. Stenbakken, "Effects ofNonmodel Errors on Model-Based Testing," IEEE Trans. Instrum. Meas., vol. 45,
April 1996.

5. G. E. P. Box, W.G. Hunter, 1.S. Hunter, Statistics for Experimenters; An Introduction to Design, Data Analysis
and Model Building, John Wiley & Sons, New York, 1978.

6. Barry N.Taylor and Chris E. Kuyatl, "Guidelines for Evaluating and Expressing the Uncertainty ofNIST
Measurement Results," NIST Technical Note 1297, 1994.

6.1




