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TheNISTPrograminDigitalVideo

ProgramObjectives

The Institute has embarked on a program of measurement technology for
advanced imaging systems as part of its mission to provide support to
industry and government in the development of measurement techniques
and standards. The program is designed in Part to respond to the emerging
technologies for digital video processing by developing the technical basis
for making measurements and setting standards.

The first major component of the program is the creation of the NIST Video
Processing Laboratory, a real-time, video processing facility centered around
a special purpose video supercomputer, the Princeton Engine. The Princeton
Engine was developed by the David Sarnoff Research Center ~d provided
to NISTby the Defense Advanced Research Projects Agency (DARPA)
because NISTis open to government and industry users and has a tradition
of independence and objectivity.It is intended that this program will contrib-
ute to the development of generic ~hnology for image and video processing
through open collaborations with other government agencies, universities,
and industry. We will also cooperate with, and provide technical infonnation
to, voluntary standards organizations.

OutsideUsers

Although provided to NIST primarily to support DARPAcontractors
developing improved video and imaging systems, other academic and
industrial researchers working on digital video processing, storage, and
transfer may apply for access to the NISTVideo Processing Laboratory and
use of the Princeton Engine. Projects which contribute to the development of
measurement technology and of open, interoperable, standards are of special
interest. BecauseNIST strives to contribute to the development of measure-
ments in an open manner, research which is principally proprietary or which
has immediate commercial impact, especially in the consumer electronics
market, is not appropriate. Those projects which are suitable for collaborative
research with NIST personnel and which exploit the capabilities of the
Princeton Engine at NIST will be given a high priority.

The purpose of this publication is to summarize for potential users the
resources of the NIST Video Processing Laboratory including the capabilities
of the Princeton Engine. It is our hope that this infonnation will enable
you to assess the applicability of the Princeton Engine and of the NIST
facility to your projects. Interested users may contact the technical personnel
listed on page 25.
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TheNISTVideoProcessingLaboratory
FacilityDescription

The NISTVideo Processing Laboratory has been created to provide hard-
ware and technical support for governmental, industrial, and academic
researchers working on digital video processing. It is located at the NIST
Gaithersburg campus and offers users access to laboratory video equipment
and officespace.

The centerpiece of the facility is a video supercomputer, the Princeton
Engine. Designed and constructed by the David Sarnoff Research Center in
Princeton. NI, it was delivered to NIST in April 1991.The Princeton Engine
provides real-time video and image-processing capability. It can accept a
variety of video formats over multiple, wideband input channels and can
output NTSC,high definition, or other video formats. Because the Princeton
Engine is programmable, it is possible to use it to evaluate prototypes of
video processing components rapidly and at a cost below that of building
hardware. The Princeton Engine at NIST is the only one open to governmen-
tal, industrial, and academic users.
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Fig. 1. Approximate representation of equipment configuration
available in the NIsr Video Processing Laboratory.
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SupportingEquipment

The specific supporting equipment available with the Princeton Engine is
evolving, however, figure 1describes the laboratory as it soon will be
configured. Typical operation involves connecting a video source to the
Princeton Engine through the video switcher, downloading an executable
code segment from a host workstation, and viewing or recording the pro-
cessed video output on a monitor or video recorder.

The listing below includes a more complete identification of the available
equipment. (Numbered items are keyed to the numbered circles attached to
the blocks in figure 1.)The use of specificproduct names does not indicate
that the item is the best available for the application nor does it constitute an
endorsement by NIST;names are shown only to clearly identify the equip-
ment in use.

1. Sony LVS-SOOOA,Laser Disk Processor and Recorder/Player,
with 12"monitor

2. JVCRRS6OOU,S-VHSVideo Cassette Recorder, with 400-lineresolution
3. Sony HDDl000PAC, HDlV Digital Processor and Recorder/Player (It)
4. BarcoICD451B,19" Multiscan Video Monitor (3 units)
5. Panasonic AG540,S-VHSCamcorder, with character generator
6. Dynair FR-8704A,RGBVideo Switcher
7. Shibasoku CM65B6,29" HD1V Multiscan Monitor
8. Tektronix TSG1001,Programmable Television Signal Generator
9. Sony, Multiscan Projector
10. Videotek DMI41S,NTSC Demodulator
11. QMS820,8-1/2" x 11"Laser Printer
12. Calcomp 58436XP,36" Plotter (It)
13. Apollo DN400tc,Color Graphics Workstation (It)
14. Apollo DN4500,Color Graphics Workstation (2 units)
15. Shinko rnC-743MV, Color Video Printer

Not shown, but also available:
Lyon-Lamb RTC,Converter .

Lyon-Lamb ENC, Encoder /Transcoder
JVC RRS6OOU,S-VHS Video Cassette Recorder with 19" Monitor

(It)not presently available, to be delivered
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TheNISTVideoProcessingLaboratory

In addition to the equipment listed above, the workstations in the laboratory
are linked to other workstations at NIST (and to the Internet) for data trans-
fer to and from a variety of additional disk and tape storage units. Generally,
data transfer to and from the Princeton Engine is accomplished through the
high-speed video channels. But, small amounts of data can be downloaded
from the host workstations, or captured from the Princeton Engine outputs
and saved on a host workstation, if necessary.

ThePrincetonEngine

GeneralDescription

The Princeton Engine was developed at David Sarnoff Research Center,
originally to provide television system developers with the capability of
simulating video systems in real-time. It processes a video signal one scan
line at a time, performing either an identical set of operations on each scan
line, or one of several sets of operations in a line-dependent manner. Field
and frame processing is accomplished by storing samples of successive scan
lines in processor memory. "Programs" resemble electronic circuit diagrams
and are developed using computer-aided-design (CAD) tools on a host
workstation. Instead of electronic components that are connected by wires,
the "circuit" consists of functional modules, representing predefined compu-
tational subroutines, that are connected by data flow paths. After compila-
tion, the object code is downloaded to the Princeton Engine and run in
real-time.

The ability to make changes to the circuit diagram and re-run the modified
simulation quickly, as well as the ability to define run-time user parameters,
allows the Princeton Engine to serve as a testbed for new system/circuit
designs where the engineer can ask "what if?" and observe the results as
real-time video. The architecture and programming environment is designed
to enable the user to simulate digitally, in real-time, very complex analog and
digital video processing devices.

A simplified diagram of the architecture is shown in figure 2. The Princeton
Engine is a Single-Instruction-Multiple-Data (SIMD)massively parallel
supercomputer. That is, all the processors execute the same instruction
simultaneously but use different input data. In its present configuration at
NIST it has 1024processors.
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Fig. 2. Simplified functional diagram of the Princeton Engine and
the Apollo host workstation.

DataFlowWithinthePrincetonEngine

The architecture of the Princeton Engine is one of the most distinctive
features of the machine. As shown in figure 2, the incoming video data
stream (either composite or component) is sampled and converted from
analog to digital form, line-by-line,by one of severa18-bit analog-to-digital
(A/D) converters. The sampling rate can be set by the user to 14.32,28.64,or
57.27MHz. Additional circuitry (not shown) provides synchronization to
the scan line rate for NTSC,PAL,and several HDlV formats. Moreover, this
circuitry may be software-configured to employ sampling rates that are
independent of the syncronization rate.

As the data samples are acquired along the scan line, they are moved serially
into the upper shift register, and once each scan line the samples are moved
in parallel directly to the processors, one sample or pixel per processor. Each
processor operates on one pixel in each scan line. The output data are then
moved to registers and thence to digital-ta-analog (D/ A) converters which
reconstruct an analog signal for output to a video display device.
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The Princeton Engine

InstructionFlowWithinthePrincetonEngine

In general all of the 1024 processors of the Princeton Engine execute the same
instruction at the same time. Thus for the purposes of programming, the
processor array may be modeled as if it were a ~ingle processor. Instructions
for all the processors are stored in a single instruction store memory, and
each instruction is sent in turn simultaneously to all processors. The instruc-
tion sequence is restarted at the beginning of each scan line.

All program development is done on the Apollo host system, including
creating (writing) and compiling programs. After being compiled on the
Apollo host, instructions (objectcode) are downloaded into the instruction
store memory of the Princeton Engine and executed. As mentioned above,
generally all processors execute the same instruction, however rudimentary
program branching is possible by conditionally '1ocking" a subset of proces-
sors, forcing them to execute null operations, while the unlocked set contin-
ues execution of the main instruction stream.

Execution of different programs on different scan lines is also possible. For
example, one program may execute during the first half of the frame or field,
and a second program during the second half providing comparison view-
ing. As, another example, one program may execute during the visible
portion of the picture and a second may operate during the vertical retrace
interval. This process is discussed in more detail in Une Dependent
Programming (LDP)below.

Real-TimeOperation

In real-time operation, data are processed and output at the same rate as they
are input. This imposes a limit on the number of instructions for each scan
line because the processing time per scan line must not exceed the horizontal
scan period. For NTSCthis real-time instruction limit is approximately 910.
For other video formats the real-time instruction limit may be calculated
from the horizontal scan rate and the processor instruction clock of nearly
14.32mega-instructions per second. For an HD1V standard, 1ffiOlines/frame,
interlaced scan, 29.97frames/second, the maximum number of instructions
is 455, i.e., 14,318,182/(29.97x 1050).

Parallelism within the processor permits up to six processor operations to
occur within one instruction. Processor operations include moving data
between registers, accessing local memory, multiplying two operands, and
performing arithmetic logic operations. Not all operations can be executed
together within the same clockcycle, but significant reductions in the num-
ber of required instruction cyclescan be achieved by efficient scheduling of
operations.
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Non-Real-TimeOperation

For those video processing algorithms that exceed the real-time instruction
limit, instructions may be included to store the incoming video data (at
incoming video rates) into local processor memory; Once sufficient data have
been accumulated (or the memory is full) processing of the stored data can
be started. When complete, the processed data (still in local memory) are
distributed to the output for reassembly into a continuous video stream for
viewing as real-time video. This mode of operation is called video-clip
processing.

The maximum length of a video clip is determined by the processor memory
and the format of the video sequence to be stored. For example, each proces-
sor has 128 Kbytes of memory organized as 64 K of 16-bit words, with
approximately 49 Kwords available for user storage. NTSC video has
525 lines per frame and a 1/29.97 second frame rate, thus requiring
525 x 29.97 = 15,734 pixels per second per processor. Packing two pixels into
every 16-bit word, 50,176 words per processor provides up to 6.37 seconds of
NTSC video storage.

More generally, non-real-time operation is possible with either video or non-
video data. Integer arrays or fixed point real arrays may be stored in the
local processor memory subject to the limits discussed above. The indepen-
dent instructionstorememory(common to all the processors) can hold up to 64
different programs each of which may be as long as 4096instructions. By
combining multiple programs so that they execute as one, a program of up to
262,144instructions can be executed. This permits the execution of very long
algorithms.

AdvancedFeatures

In addition to "standard" video data flow, hardware has been included to:

provide multiple viewable outputs on one viewing screen and/ or
multiple viewing screens for side-by-side comparison of algorithms,

execute different programs on different scan lines, for comparison of
multiple algorithms,

transfer pixel data between processors,

acquire portions of the output data in a capture memory for subsequent
transmission back to the Apollo host,

route selected digital output data back to the input for further
processing.

Please refer to figure 3, a more detailed diagram of the Princeton Engine, for
the following discussion of the advanced features.
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Fig.3. Princeton Engine system diagram.

ComparisonViewing

A specialized output formatter, the Output Timing Sequence (01'5) facility,
permits split images on the output video monitor where each image is
derived from a different video signal. For example, two outputs could be
displayed, each occupying a vertical stripe of width one-half of the total
screen width. A typical use might be to compare the results of two algo-
rithms; or with three stripes to display the two results and the difference
between them. Different outputs could be assigned to different points along
a circuit diagram to observe the progression of the signal through the pro-
cessing chain. Up to four vertical stripes may be defined.
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In addition to using the 01'5 to specify the formatting of the entire picture
(i.e., a vertical stripe), several OTSpatterns can be constructed and each
"mapped" to operate on certain scan lines. This '1ine-dependent" 01'5
feature can be used to specify up to 1601'5 patterns per channel (64total).
The screen can thus be broken into a checkerboard of video outputs.

Une-DependentProgramming

The program memory map in the microsequencer allows the user to execute
different programs during a single field or frame, as opposed to normal
operation where the same program is executed for each scan line. This
permits the user to compare the results of different programs for example by
specifying program" A" for the top half of the screen and program "B" for
the bottom half.

The advantage of line-dependent programming for comparison viewing of
multiple algorithms in real-time is particularly apparent. It is possible to
combine multiple algorithms into a single program and use 01'5 mapping to
select outputs from the different algorithms for comparison viewing, but in
this case the multiple algorithms must all run (sequentially) within a single
scan line period. In LOPeach program is executed independently for its
particular scan line(s).Thus, (for real-time NTSCoperation) eachline-depen-
dent program/algorithm is limited to 910instructions, while with OTS,the
totalnumber of instructions for all algorithms combined must not exceed
910instructions.

Up to 64 different programs, of up to 4096instructions each, and a program
sequence map can be downloaded into the microsequencer to specify which
of the 64 programs is to be executed for each scan line.

CommunicationBetweenProcessors

In the discussion so far, the data for each pixel on a scan line was sent to its
corresponding processor; no data sharing or transfer between processors was
attempted. However some applications will require that a processor have
knowledge of data sent to, or computed by, a neighboring processor. The
InterProcessor Communication (!PC)bus allows any data within a processor
to be sent to another processor.

To use the !PC, data generated (or received) in a processor is loaded into the
!PC bus register for that processor and an !PC bus transmit command is
executed (by all the processors) to shift all the loaded data either left or right
on the bus (multiple times if necessary) until they reach their destination
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processors.Data at each end of the bus may be looped around to the proces-
sor at the other end of the bus (to the leftmost processor for a right shift, the
rightmost processor for a left shift) or a constant user specified value may be
shifted into the ends.

Also permitted is selective transmission and reception of shifted data by
processors. Any processor may be excluded from exporting data to the IPC
bus and/or receiving data. For example, data from every fourth processor
may be sent to the three adjacent processors to its left (or right) or every
second processor can send data to the second processor on its left, skipping
its nearest neighbor. Finally,a single processor may be selected to broadcast
to all other processors, or a subset of all other processors.

Feedback-Cutput.to-Input

A 32-bit wide digital path connects the final digital output of the Princeton
Engine back to the input. This permits iterative processing of data, or com-
parison of processed data to incoming data. One possibility is to use ors to
map the feedback path to different processors. This mapping method may be
more efficient than using multiple IPC shifts and/or broadcasts, which
require one or more processor instruction cyclesper shift.

DataCapture

It is also possible to "capture" a portion of the output data stream and
upload it to the Apollo host workstation where it is stored as numerical data
in a file.The user must specify (in advance, via a mapping file)which scan
lines for which processors are to be captured. At present a maximum of 32
lines may be captured at one time.

The reverse of this process, that is, taking numerical data from the Apollo
and downloading it into the Princeton Engine for processing is accomplished
in a round about way. Directly dumping data from the Apollo to the
Princeton Engine input is not practical. The data must be loaded into specific
local processor memory locations before processing is started, and the
Princeton Engine program must be written to expect the input data in the
local processor memory rather than from the usual video source.
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ProgrammingPhilosophy

Unlike conventional computers where a program is created as lines of text,
programs for the Princeton Engine are created graphically. A "circuit dia-
gram" is drawn to represent a video processing function the user wishes to
simulate. Boxesrepresent modules of program code and connecting "wires"
indicate data flow paths. Figure 4 is an example of such a circuit diagram or
program. Here, a composite NTSCvideo signal is digitized by an analog-to-
digital converter and then fed to a delay line (HDEL.M),adders, subtractors,
dividers (DIV2.M),and filters (FIR7.M)to separate the luminance and
chrominance components. Further manipulation by various modules pro-
duces the red, green, and blue video components which drive the three
digital-to-analog converters. (The synchronization and timing circuits of the
Princeton Engine cause this program to be run at the start of each scan line.)

This one circuit diagram represents the code for all 1024processors as each
processor executes the same instruction as its neighbor, but with different
parts of the video signal as an input. This one processor model will be used
nearly universally when discussing programming. (One exception to this
model is the ability to conditionally prevent specificprocessors from execut-
ing instructions while normal program execution proceeds on the others, i.e.,
rudimentary branching.)

RED

GRE

... -..---
1IIIICI..llECti

BLU

_II
OII___fU.m.on

Fig. 4. A program for the Princeton Engine. This program
decodes an NTSCcomposite video signal into red, green,
and blue component video.
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Many modules have been previously coded and are available in a user
library (see Appendix A for a list of the available modules). When necessary,
new modules may be created by the programmer. Code within the modules
is based on the 16-bitarithmetical and logical computational abilities of the
individualprocessors. .

All programming, creation of modules and circuit diagrams, compiling, and
linking, is done on an Apollo workstation and only the final machine code is
downloaded to the Princeton Engine for execution. Although the Engine is a
single user machine, multiple users may share its use by developing pro-
grams simultaneously on the Apollo workstations and running their code in
turn. Video monitors are provided alongside all Apollo workstations for
viewing the video outputs.

More traditional text-based compilers are under developl11ent,and may in
the future augment or partially replace the programming tools available
today. These compilers are discussed in the "Future Programming lan-
guages" subsection on page 24. However, to appreciate the role these compil-
ers will play in program development we suggest you read the ''Program-
ming Examples" section (below) first.

ProgrammingExamples

The programming environment for the Princeton Engine is unusual in that it
is based on a computer-aided-design tool-the Mentor Graphics CAD
system for circuit diagram construction. This has the advantage of being a
familiar environment for many electronics engineers, but computer scientists
and other programmers may need to translate their traditional techniques to
this new method.

As implied by the discussion in a previous sub-section, two levels of pro-
gramming are available for the Princeton Engine. "High level" programming
is the construction of the circuit diagram. In many cases all the necessary
modules for the circuit have already been created and construction of the
circuit diagram is all that is required. However, if some specialized modules
are not available, '1ow level" assembly language programming will be
required for creation of the modules. The two examples that follow illustrate
these two programming processes.
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Example1-CreatingCircuitDiagrams

This first example demonstrates the construction of a circuit diagram.
Figure 5 is a flow chart for the algorithm to be implemented. It processes a
3-component input signal in color-differenceformat (Y,R-Y,B-Y)and
produces three 3-component outputs: the input converted to RGBformat, a
frame delayed or a still image (frame frozen) RGBoutput, and the difference
between the first two outputs (the motion components).

INPUT
Y,R.Y,BoY

MATRIX
MULTlPLY

DETECT
MOTION

NO(0) YES(1)

DISPLAY
ORIGINAL,

FREEZE,and
DIFFERENCED

FRAMES

· Input a 3-component video signal
(Y, R-Y, B-Y).

· Matrix multiply the (Y, R-Y, B-Y)
color difference vector, converting
it to RGBformat.

· Difference incoming frame with
current frame buffer contents
(last or frozen frame) to detect
motion.

· Under run-time user control, either
replace frame buffer contents with
present input, or leave frame buffer
unchanged (freeze previous
image).

· Output three RGBvideo signals:
the original signal, the frozen or
delayed signal, and the difference
or motion detected signal.

· Repeat for each frame.

Fig.5. Flow chart for the example algorithm to be implemented
on the Princeton Engine. A 3-component color difference
video signal is processed to produce a 3-component RGB
video output signal and to detect motion between
video frames.



14 VideoProcessingWiththePrincetonengineatNIST

Programmingth~ Princeton Engine

The NETED window environment is illustrated in figure 6. NETED is the
NETwork EDitor of the Mentor Graphics CAD system, and is used for
creation of all circuit diagrams/programs. Mouse controlled menus are used
for window management, drawing, and editing functions. Most operations
take place in the EDITwindow where the circuit program is built from
modules and interconnecting wires, or nets in the NETEDteminology.

In figure 6 construction has been started on the motion detection and freeze
frame circuit. A freeze frame and differencing sub-assembly has been created
by selecting the FREEZE.Mand SUB.Mmodule symbols, one at a time, from
the parts list (which automatically placed them into the active part window).
From the active part window they were copied to the edit window and

=-":':i~III , _1 8111ctc-U I HElP IWINDOW8 II fiLE I 8ETII' I IIA8ICIIADVANCEDI

AcnvE PART WINDOW

.~ EDIT WINDOW

-
"'i8di"i.....
:=:. PARTS
=.. UST-....-------_-c1d.8---..............---..=---------------~-..--

VIEW WINDOW

,..!D4,"' Ih8--OCI== ~~I~--"_-- WINDOW

Fig.6. NETED,the graphical circuit editor for developing
programs for the Princeton Engine. Major constituents are
the EDITWINDOW(upper right) where drawing is done,
the ACfIVE PARTWINOOW(upper left) where parts are
loaded from the PARTSUSf in preparation for copying to
the edit window, the VIEWWINDOWfor simultaneous
viewing of a different part of the circuit, or a different
circuit, and the TRANSCRIPTWINOOWwhich contains a
historical list of the commands that have been executed.



VideoProcessingWiththe Princetonengineat NIST

Programmingthe Princeton Engine

15

placed in their desired locations. Interconnecting nets were then routed
between the module pins. Finally, the subassembly was copied twice to
produce the complete drawing shown in the figure. (As an example of the
capabilities of the drawing program, note that the standard SUB.Mmodule,
shown in the active part window, has been flipped about its horizontal axis
before being placed in its final position in the edit window.)

The circuit is completed by copying the necessary remaining modules into
the edit window and drawing connecting nets. When the final wiring is
complete, the design "syntax" is checked for disconnected or misconnected
nets and if no errors are obtained the design is saved to disk. After construc-
tion with NETED,the design must be compiled and linked using the Graphi-
cal Program Composer (GPC). The resulting machine code may then be
downloaded and run on the Princeton Engine.

y RED

lODE...
FlEa.141HZ

GREEN

BLUE

lODE.a
FIIEQ.18HZ

Fig. 7. The complete example circuit converts color-difference
video signals to RGB. The circuit displays four outputs (as
indicated by the 4 input signals to each DAQ, the original
video input, a frame delayed or a still image video signal,
the differencebetween the delayed or still image signal
and the original signal, and a probe output. The probe
input can be temporarily attached to any net (wire) in the
circuit for viewing the signal along that segment. (For this
example the probe input has been attached to the output of
ADC_MOas indicated by the PROBE_llabel; routing wires
are not used to indicate probe input connections.)
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Example2 - CreaUngNewModules

New modules may be needed when precoded modules are not available to
do a specialized operation, or if it is desired to combine several modules into
a single module-to eliminate redundant instructions. New modules are
created in a two-step procedure.

1. Create machine code using the Graphical Program Editor (GPE).

2. Generate a symbol to represent the code on a NETED schematic using
the Mentor Graphics SYMbol EDitor (SYMED).

As a second exercise we examine an already coded module which has been
developed using GPE. The module FREEZE.Mhas two inputs, A and aRL,
and one output Y.The purpose of the module is to freeze (or pass through)
one video frame, input through A, and output to Ydepending on the status
of aRL. IfaRL =0 then A is passed through to Ydelayed by one frame
time and is simultaneously stored in a frame buffer in local processor
memory.Ifinput aRL '*0 then the laststoredframeis output.

CreatingcodewithGPE

The Graphical Programming Environment (GPE)is used to produce the
machine-level code which makes up the low level modules in the program-
ming hierarchy. Figure 8 shows the GPE programing environment with no
instructions yet defined. As with NETED,because all the processors execute
the same instruction, the entire processor array may be modeled as a single
processor. GPE shows a representation of that processor on the screen, and
its various components (registers, ALU, RAMaccess, etc.) can be intercon-
nected by drawn lines. GPE shows three instructions simultaneously, the
one being created or modified in the main or lower panel, the previous
instruction in the upper-left panel, and the next instruction in the
upper-right panel. (Theprevious and next instruction panels are blank here
as we are showing how a new module is started and no instructions have
been defined.)
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Processor resources available to the programmer include:

- a 64-register register file (REG_FILE) for temporary storage,
access to the interprocessor communication bus for shifting data to

neighboring processors (LEfT, IPC_BUF, RIGlIT, COM_REG),
a 2-input arithmetic-logic unit (ALU) for arithmetic and logic

operations,
a 2-input multiplier (MPY, PP, and P) for multiplication and product bit

extraction,
- access to RAM for local data storage and module input and output, and

the use of intermediate registers IREG1, IREG2, DI1 for access to
the register file (REG_FILE) and intermediate register DI for
access to RAM.

Operations generally consist of moving data to and from the ALU or multi-
plier and the intermediate registers. To improve code readability, the regis-
ters may be labeled by the user to indicate their contents.

Fig. 8. Graphical Programming Editor showing the PE processor
model and pop-up menu controls for selecting processor
operations.
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We will now briefly discuss the GPEprogram instructions for the FREEZE.M
example. Figure 9 shows the first instruction of the program listing of the
FREEZE.Mmodule as produced by GPE. (The seven additional instructions
for the module continue on the next several pages.) Data flow between
registers is indicated by lines with arrowheads which are drawn between the
source and destination register. We recommend that labels be assigned to the
registers to indicate their contents. For example, note that the register indi-
cated as IREGl in figure 8 (its real name) is labeled 0 in figure 9 below, as it
will contain zero after execution of the instruction. Not all registers can be
direct1yinterconnected, hardware restrictions prohibit connecting the
register labeled LCMto accumulator ACCl, for example. Pop-up menus
(not shown) are used to select ALU operations. A complete listing of all
processor operations is included in Appendix B.

~ I IPCUIUF I ~ I COII..AEGI
IIODULE : FREEZE.II 112718

INSTI

Fig.9. The first GPE instruction for the FREEZE.Mmodule.
(Sevenadditional instructions continue on the next 4 pages.)

Instruction1: Communication between modules is accomplished by storing
output data in a defined location in local processor memory where the next
module will be instructed to look for it. The program compiler (Graphical
Program Composer, GPC) resolves these memory location definitions
between modules; the programmer assigns an input or output to the appro-
priate pin name on the module symbol. For our example, input to the
module is obtained through the input pins A, and CTRL. In instruction 1
input CI'RLis loaded from RAMinto the RAM-intermediate-register, here
labeled "CfRL" to remind us of its contents. At the same time registers 54
and 33 of the register fileare loaded into PORTl and PORT2intermediate
registers labeled "0" and "LCM." Registers 54 and 33 contain predefined
values of zero, and the current scan line number, LCM,respectively.

11I1 I I

CUPOFF II

i: 8---

I=ppi
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~ I IPC_BUFI ~ ICOlI_REG I

CUPOFF
A 8

INPUT_~

I:: ~ppI [j
INST2

Instruction 2: LCM is moved from its PORT2intermediate register, through
the ALU (which is "setto output ALU(A) ) to accumulator ACCl. crRL is
moved from its RAM intermediate register through intermediate register DIl
into register 4 of the register file as designated by the 4 in the PORTt address
register and simultaneously into the PORT2intermediate register previously
occupied by LCM. Further, input A is accessedfrom memory and moved
into the RAM intermediate register just vacatedby crRL. The updated
contents of the registers will be available for the next instruction.

~ I IPC_BUF I ~ ICOlI_REGI

CUPOFF 8
-Tl-~
iiOiiii1 tPOiii2 ~0EJ

1=~ppl[j.
INn'3

Instruction 3: Input A is moved through intermediate register DIl to register
t of the register file. The line counter, LCM,is used as an index to be added
to the baseaddress of the frame buffer, FBUF,located in local memory. The
frame buffer contents are moved into the RAM intermediate register vacated
by input A.
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lnstruction 4: The zero in the PORT1 intermediate register is moved to
ALU(B), and the value of A in register 1 replaces it. CI'RL from the PORT2
intermediate register is moved to ALU(A) and the two values are added and
tested for equality to zero. This effectively tests whether CI'RL is zero or not.

lnstruction 5: H the test in the previous instruction was true, i.e., CI'RL :I:0,
the processors are '1ocked" from executing further instructions. This pro-
duces a global locking (or not) of all processors since the test condition,
CI'RL :I:0, produces the same results for all processors.

I IPC_BIIFI I COlI_REGI

"I I I
CUPOFF 8A.I

EJ GJ

[j EJ
IIPY(I) PP

Nn'4

COHO_LOCK

IFNONZERO
.... DOl

I IPC_BUF I I COlI_REG I

RED_RLE
CUPOFF 8

PI_ADR P2_ADR
PORTI PORr2 (: EJ

011REG21
GJ

EJ
1IPY(8) PP [j

INST5
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Instruction6: This instruction is only executed if the processors were not
locked in the previous instruction. If the processors are locked, this instruc-
tion will effectivelybe replaced by a no-operation. The current value of input
A is stored in the frame buffer at index LCM overwriting the existing
contents.

Instruction7: Globally, unconditionally, unlock all processors.

I IPC_BUFI ICOlI_REGI
111 I I 8CUPOFF

FBUF.)CCESS

§AL\I(B)

IIPY(B)

INSrI

I IPC_BUFI ICOlI_REG I

CUPOFF 8
EJ

011REG21
AL\I(B)

m:J EJ
IIPY(B) PP

INST7

GLOUI...UM.OCK

.
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~ I 'PC_III' I ~ I COlI_REO I

an 8
~EJ

OUTPUUIN(y)

CUP OFF

REO_RLE

pCADR II P2_ADRJIORI'I JIORI'2

o
81 IrE02 I

NIT,

Instruction 8: Move the old value of A obtained from the frame buffer, and
previously stored in the RAM intermediate register, to output pin Y.

Notethat ifCfRL '*0,thengloballylockingthe processorspreventsthe
frame buffer from being updated in instruction 6, thus the value of A that
will be obtained from the frame buffer during the next cycle (in instruction 3)
will be the last stored value, thus freezing the picture.

Generatinga symbol

Symbol generation is done using the Mentor Graphics SYMEDprogram.
Generation is simplified however by the use of a symbol generation macro
that interrogates the user about the number of input and output pins, their
names, and their locations, and then draws an appropriate symbol part. The
symbol (figure 10)is also labeled with the number of instructions in the
module (8). In most cases this is all that is required. For specialized symbols,
all the tools of the SYMEDprogram are available to customize the size,
shape, and other features of the symbol.

~

IN~A

CTRL
FREEZE.M

8
y

OUT

Fig. 10. NETEDsymbol for FREEZE.Mmodule.
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Controlling/DebuggingaRunningProgram

Control of the Princeton Engine is accomplished by sending specialized
commands (SPEScommands) from the Apollo workstations. These 43
predefined SPEScommands control all aspects of Princeton Engine opera-
tion, including loading programs, setting input and output configurations,
changing program variables while the program is running, initializing or
loading data into local processor memory, and capturing output data.
Although the user can type the commands directly, two methods have been
developed to make the system easier to use. A graphical control environ-
ment (GCE)program can be run on the Apollo to provide an interface
between the user and the SPEScommands, or NETEDcan be placed in a
GCE mode to provide control over some operations.

The GCEdisplay is shown in figure 11with the applications menu pulled
down. This configurable menu allows the user to execute a series of SPES
commands (previously defined in a text file) to set the Princeton Engine
environment and download an application in one operation. User param-
eters defined in the downloaded program will show in the boxes to the left.
The present value of the parameter is shown in the box immediately below
the parameter name, and the value is changed by clicking on the up or down
arrows. Additional menus at the top of the display allow the user to conve-
niently execute some of the more common SPEScommands.

..:.;~:~:~:~:~:~:~:~:~:~:~:~:~:~:~;::~:~;:;:;:;;;:;::;::::::::::::::::::::::::::::::::~..-

~[ COMMANDS I( PE TOOlS ~:::::::;:::::::~:::::.:::~.:}~~~m:;:;::::::::::::::::::::;:;:)

~~ NTSC_DECOOE .~.

:r:~~~::::~::::~::~:::-::::::::::::":::::::::::~::::*:::::::::::::::::::::~i.' FREEZE_FRAME ,

r~:::~:~:~~r:t~l'.e~W~:~1
::::::~~~:::::::::;::::::::::::::::::"::::::::::::::::::::::::~::~::::::::::::::~:

:~ CBERT i. .. .
:::::::::::~:::::::::::::::::::::::::::::::::;::::::::::::::::"::::"::::::::::::::::::::

.~~ SOBEL...FIL TER .~.

:::::::::::::::::::::::~:::::::~:~:::::::::~:::::::::::::::::::::::::~::~::::::::

~:::::::g~~~~:;'I:gg;~I:::j
~~ QUANTIZER :~

':::::::::::::::~::::::::::~~:::::::::i:::::i::::::::::::::::~::~::~:::::::~:::::

11::::::::::::!i:iiE:i::::::::::J
~~ FIELD_PRO_SCAN :~

t::~::::::~::~:::::::~:~:g~~::~::~::::::::::~f.

:f:::::::::.~Vj#tg.=:r:::.::::;f
:~::::::::::::::::::~::?:~~::~~~:::i::~:::::::i:~:::::::::~:::::::::::~::::~:

::::::::::~:~:~ffii;j~;r;i~~:::::;:::i

Fig. 11 Graphical Control Environment display with controls for
modifying user parameters contrast, brightness, saturation,
and tint of the BASIC_NfSCprogram shown in Fig. 4.
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When NETEDis used to control the Princeton Engine, it is placed.in the GCE
mode. Drawing operations are suspended, but revised menus are made
accessible for downloading the program displayed in the NETED edit
window, controlling the input and output registers, and changing user
parameters and filter coefficients.The most important feature, however, is
the ability to attach a moveable probe to different parts of the circuit and
"view" the data at that point. To do this the outputs of up to 3 probes may be
assigned to DAC inputs, and the actual probe-input position in the circuit is
then assigned (or changed) at run time. (Seefigure 7 for an example of a
circuit diagram with a probe.) Probing is one of the more powerful methods
for debugging circuits.

FutureProgrammingLanguages

A C-compiler and a FDRTRANcompiler are presently under development at
the David Sarnoff Research Center. Although both compilers will be cross-
compilers, i.e., they run on the Apollo workstations and produce code for the
Princeton Engine, their functions will not be interchangeable.

At the present time the Graphical Program Editor (GPE)is the only tool
available for developing assembly code for a module for the Princeton
Engine. The Princeton Engine C-compiler (PEC)will implement a subset of
the C language and eventually can replace GPEin the code development
process. It is important to note that the PEC produces code for a module
which then must be linked to other modules using a higher level program-
ming environment such as NETED;one cannot develop a complete program
using the initial release of the PEe. Initial testing of the C-compiler suggests
that the code which it produces is nearly as efficient as hand-optimized code
produced. using GPE,moreover, program control functions such as '1oops"
may be used only via PEe. Delivery of the compiler is expected in the ne~
future.

Alternatively, the Princeton Engine FDRTRAN90 compiler (which will
implement a subset of FDRTRAN90)will be a substitute for NETED for the
construction of a complete program. Preliminary results suggest that there
will be a high overhead associated with the FDRTRANcompiler.
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TheNISTTrainingProgram

NIST will provide training in the use of the Princeton Engine for DARPA
contractors and users from other collaborating organizations. This includes
training for:

the Apollo/ Aegis operating system,
Mentor Graphics CAPTUREschematic drawing software,
using previously constructed library modules,
construction of user-programmed modules,
and using Princeton Engine-specificrun-time operating software.

The more advanced features of the Princeton Engine (line-dependent pro-
gramming, OTSmapping, and Jine-dependent OTS)will not normally be
included in the training because they will not be needed by most users, are
relatively complex, and require a thorough knowledge of the Princeton
Engine hardware. (See the section on The Princeton Engine - Advanced Features
for further detail about these topics.) Instead, NIST personnel will assist the
user directly, providing specific solutions for the user's problem if the use of
such advanced capabilities becomes necessary.

The training program consists primarily of self-directed study using refer-
ence material and workbook exercises provided by NIST.NIST experts will
be on hand to answer questions or to explain difficult concepts. Sufficient
student time will be made available on the Apollo workstations and the
Princeton Engine for running and testing the workbook exercises or other
problems the student may wish to try.

The training program is expected to take from 1 to 2 weeks to complete,
depending on previous experience the student may have with the Aegis
operating system or the Mentor Graphics CAD software. At the end of the
program the student should have basic competency in developing programs
for the Princeton Engine and running and debugging those programs.

NISTContacts

For more information about the NIST laboratory or the Princeton Engine at
NIST contact:

Dr. Bruce F. Field
(301) 975-4230, email: field@eeel.nist.gov

or
Dr. Charles Fenimore
(301) 975-2428, email: fenimore@eeel.nist.gov

National Institute of Standards and Technology
B344,Metrology Building
Gaithersburg, MD 20899
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ModuleLibraryforthePrincetonEngine
There are presently over 150modules in the Princeton Engine Library. These
modules are general purpose code elements that form the basis for develop-
ing Princeton Engine "programs" using the NETEDcircuit diagramming
software. (SeeProgrammingthePrincetonEnginefor more detail about
NETED).A list of the modules is presented below, categorized by
module function.

Analog-fOoDlgUalConversionModules(videoInput)

Several modules have been created to represent and control the analog-
to-digital (ADO hardware inputs. They convert an input analog video
signal to a digital stream for processing by other modules. The output is
represented in either two's-complement or binary format depending on
the module used. Different AID modules are also used to represent one
of three main or three subchannels.

ADC_MO
ADC_MOB
ADC_Ml
ADC_M2
ADC_SO
ADC_Sl
ADC_S2

8-bit ADC
8-bit ADC
8-bit ADC
8-bit ADC
8-bit ADC
8-bit ADC
8-bit ADC

main channel #0, two's-complement
main channel #0,binary format
main channel #1, two's-complement
main channel #2, two's-complement
sub channel #0, two's-complement
sub channel #1, two's-complement
sub channel #2, two's-complement

Dlgltsl-ta-AnalogConversionModules(videooutput)

These modules are used to route the processed digital video signal from
other modules to the output digital-to-analog (DAC)converters. Some
modules include additional digital inputs (up to four) that are routed to
additional 01'5 registers so that the separate video signals may be
displayed in vertical stripes on the same monitor. (SeeThePrinceton
Engine,AdvancedFeaturesfor additional information about OTSchannel
outputs.) All modules are two's-complement.

RED8_1
RED8_2
RED8_4
GRES_l
GRE8_2
GRES_4
BLU8_1
BLU8_2
BLU83
DAC3.8_1
DAC3.8_2

8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC

single-input red DAC
2-input red DAC
4-input red DAC
single-input green DAC
2-input green DAC
4-input green DAC
single-input blue DAC
2-input blue DAC
4-input blue DAC
single-input DAC#3
2-input DAC#3
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DAC3.83
DAC4.8_1
DAC4.8_2
DAC4.83
DACS.8_1
DACS.8_2
DACS.8_4
DAC6.8_1
DAC6.8_2
DAC6.83

Logical/ArithmeticModules

8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC

4-input DAC#3
single-input DAC#4
2-input DAC#4
4-input DAC#4
single-input DAC#5
2-input DAC#5
4-input DAC#5
single-input DAC#6
2-input DAC#6
4-input DAC#6

These modules perform the indicated computation on one or more 16-bit
two's complement inputs and produce a 16-bitoutput. Inputs are
typically denoted by A, B,...etc.(Exceptionsarenoted.)

ABS.M
ADD.M
ADD3.M
ADD_DIV2.M
AND.M
CUP.M
COMP.M
CONST.M
D1V2.M

- DIV128.M
INV.M
LT1.M

- LT9.M
MEDIAN3.M
MIN.M
MAX.M
MAX3.M

- MAX7.M
MIXER.M

MULT.M
MULT2.M

- MULT128.M
ONESC.M
OR.M
PROC_NUM.M
QUANT8.M
SDIV.M

IAI
A+B
A+B+C
(A+B)/2
Bitwise logical 'ANI)' of A and B
Clip input-A to lie within inputs LOL and UPL.
Output 1 if input-A >= input-TH, 0 if A < TH.
Constant (user specified on NETED).
A / 2N (N =2 to 7).

Binary NOT( A )
A limited to N bits (N =1 to 9).

Median of three inputs, A, B, C
Minimum of two inputs, A, B
Maximum of two inputs, A, B
Maximum of N inputs (N =3 to 7).

A x K+ B x (1-K) (A, B, and Kare inputs, Kis an
8-bit input, 0 < K < 1).

(A x B) / 28
A X 2N (N =2 to 7).

one's complement(A)
Bitwiselogical'OR'of A andB
Processor number (= 0 to 1023).
A quantized to 8 bits.
Two outputs, Q =INT( A/B );

R = Remainder( A/B)
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SEG.M

SUB.M
SUB_DIV2.M
TWOSC.M
XOR.M

ComrolStructures

If (input-A is between two inputs STand END)
then output =input-MAX
else output =input-MIN

A-B
(A-B)/2
two's complement(A) (A is one's complement).
Bitwise logical exclusive 'OR' of A and B

Branching and looping are presently supported only by forcing selected
processors to execute NOPs (no operations) while other processors
continue to execute the instruction stream.

BRANCH_TEST.M Branch test module is an example of this condi-
tional execution.

MUX2.M 2-input multiplexer, one of two inputs selected
based on third input CNTL=0 or 1.

MUX4.M 4-input multiplexer, one of four inputs selected
based on third input CNTL =0, 1,2, or 3.

SOFr_SWITCH.M Effectivedissolve between 2 inputs A and B.
Four inputs and one table are required, A, Bare
video inputs K, and TH are control inputs, and
table T1 is the dissolve mapping function.

Controlof InterprocessorCommunicationOperations

BCl.M
-BeS.M

BP.M

CLEAR_IPC.M

IPC_LS.M
- IPC_LS3.M

IPC_RS.M
- IPC_RS3.M

Input broadcast to other processors according to
broadcast pattern BCl. Modules provide from
one to five wait instructions.

Configures the IPC circuitry to bypass processors
according to a pattern defined at compile time.

Clear Interprocessor Communication circuitry
erasing any previously loaded broadcast or
bypass pattern.

Interprocessor left shift N times. (N =1 to 3).

Interprocessor right shift N times. (N = 1 to 3).
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Rlters

A number of finite impulse response filters for spatial and temporal
filtering are included. Initial values for the filter coefficientsare specified
while creating the circuit using NETEDbut they may be updated later
during run-time.

FIRXX_VY.Mis a generic two-dimensional filter with the following
naming convention:

XX =the horizontal filter length, and
VY = the vertical (temporal) filter length.

The internal accuracy of these filters is limited to 8 bits.

FIRO<U>3.M, FIROO_OS.M, FIROO_07.M, FIROO_09.M,
FIR<>3_00.M, FIR<>3_<>3.M,FIR<>3_OS.M,FIROS_OO.M,
FIROS_OS.M,FIR07_00.M, FIR07_07.M, FIR09_00.M,
FIR09_09.M

FIR3.M, FIR7.M,
FIR9.M

FIR16_39 _OO.M

HorizontalS-bit filters with 3, 7, and 9 taps
respectively.

A two-dimensional l6-bit accuracy filter, horizon-
tal filter length = 39,verticalfilterlength=o.

DelayModulesandLocalProcessorMemoryOperations

FRAME_BUF.M

FRAME_BUF2.M

FREEZE.M

FREEZE2.M

HDEL.M
HDEL01.M

- HDEL07.M

RD_MEM.M

Output is frame delayed version of input. The
frame time is defined by the video input format.

Two outputs are frame delayed versions of inputs
A and B.(Frame size is defined by the video
input format.)

Output frame delayed version of input-A if input-
CI'RL =0,if CI'RL= 1output previouslystored
frame.

Output frame delayed versions of inputs A and B
if input-CI'RL =0,if CI'RL =1output previ-
ously stored frame.

Input delayed by one scan line.
Eachmoduleproducesmultipleoutputs (YOlno

YON,N = 1 to 7),delayed versions of input by N
scan lines.

MEM_LOC(3800+ input-OFF)
Read (and output) a memory location in local
processor memory specified by address
input-OFF (relative to 3800HEX)
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RD_FB_REG.M Read a memory location in local processor
memory specified by a compile time address.
Address alsoprovided to output R_AD.

RD_IFRAME_STORE.M Readinput-A into frame buffer specified by
input-ST_R.

READ_IMAGE.M Output data from frame buffer specified by input-
ST_ADRS.

RFS.M Output data for global (to all modules) frame
buffer specified by input-ST_R.

RFS2.M Two simultaneous outputs from double global
frame buffer specified by input-ST_R.

WFS.M Write input data to global frame buffer specified
by input-ST_R.

WFS2.M Write input data to double global frame buffer
specified by input-ST_R.

WR_FB_REG.M Output data from local processor memory from
address specified by input-R_AD. Write input-A
to a memory location R_AD.

WR_MEM.M MEM_LOC(3800+ input-OFF)
Write input to a memory location in local
processor memory specified by address input-
OFF (relative to 3800 HEX).

BRCT.M

VideoControls and NTSC SpecNlcModules

CBS_AT.M

CTBR.M
DEMOD.M

DEMOD_SUB.M
FCOMB.M

FLD262.M

FLD_DELAY.M

FLD_SWITCH.M
FRAME_COUNT.M

Modify videoinput by brightnessand contrast
values.

Given Yand C inputs, apply brightness, contrast,
and saturationvalues,and separateintoRGB
components.

Modify input by contrastand brightnessvalues.
Chroma demodulator separates the NTSCchroma

(C) signal into two components (I and Q).
Chroma demodulator for the sub channel.
Separates composite NTSCsignal into luminance

output and chrominance output using a frame
comb.

Output F262is input A delayed by 262horizontal
scan lines.

Outputs D262,D263,and D264are input A
delayed by 262,263,and 264horizontal scan
lines respectively.

If NTSCfield is even then output=O else output= 1.
Outputs a count that increments on the first line of

every NTSCframe (every 525lines).
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FRMFLD_BUF.M

FRMFLD2_2.M

G525.M
MATRIX.M

PROBE_I
- PROBE_3

PROBE_IS
- PROBE_3S

SUB_MAIN.M

TINT.M

MiscellaneousModules

INPUT_CON1ROL

EXT_FBO_IN
EXT_FBI_IN
EXT_FB2_IN
EXT_FB3_IN
EXT_FBO_OUT
EXT_FBI_OUT
EXT_FB2_0UT
EXT_FB3_0UT
LUT8.M
- LUTlO.M

SUBSAMP.M

USER_P ARA.M

LargerDemonstrationModules

QBERT.M
SOBEL
ZONE.M

Provides two outputs, a 262 line delayed, and a
frame delayed version of the input.

Provides 262,263,and 525line delayed outputs for
two inputs.

Outputs 0 to 524,a line counter.
Converts Y, I, and Q into R, G, and Busing

standard NTSCweighting.
Assigns probe channels to DAC ports. Probes

allow internal signals on the NETED circuit
diagram to be displayed on the video monitors.

Assigns probe channels to DAC ports for sub
channels.

Synchronize timing of subchannel to main chan-
nel.

lOUT and QOUT are the phase rotated versions of
the quadrature inputs CIN and QIN.

Control variable set by GCE during run-time (to
select different algorithms for example).

Input from external feedback channel 0
Input from external feedback channell
Input from external feedback channel 2
Input from external feedback channel 3
Send input to external feedback channel O.
Send input to external feedback channell.
Send input to external feedback channel 2.
Send input to external feedback channel 3.
Output value from lookup table using address

input. Pathname of lookup table specified using
NETED. <Modulenumber specifies number of
address bits of lookup table.)

Subsample input, output = input-IN AND
MEM_LOC(input-0FF + 3800).

Output user parameter to circuit. Parameter
appears in GCE control environment for user
modification at run time.

Adaptive Line Comb NTSC Decoder
Sobel Edge Detection Module
Zone Plate Test Pattern Generator
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ProcessorOperations

Processor operations consist of moving data between the intennediate
registers, the arithmetic logic unit (inputs ALU(A)and ALU(B», the multi-
plier (inputs MPY(A)and MPY(B»,and the interprocessor communication
bus (IPC_BUF>.

The ALU perfonns arithmetic, logical, and functional operations on 16-bit
data with its output routed to one or both of the output accumulators, ACC1
or ACCl. depending on the operation.

The multiplier operates on two 16-bittwo's complement inputs routed to
MPY(A)and MPY(B)producing a 32-bit intermediate value. The Product
Picker (PP)allows the user to select 16contiguous bits of the 32-bit product
for placement into the output register P. The product picker effectively
provides division by powers of 2 and can facilitate fixed point arithmetic.
The figure below is a representation of the processor.

The interprocessor communication bus is used to transfer data between
processors. Within a processor, data is routed to the IPC_BUF register before
the transfer and the data received from a second processor is routed from the
IPC_BUF register after the transfer is complete. The LEFT and RIGHr boxes
on the diagram serve to initiate shifting operations. More complicated
transfer patterns are invoked using the COM_REG.

GPE processor model which includes an ALU,hardware Multi-
plier, 64-registerregister file, RAMaccess,and IPCaccess.

I IPC_BUFI I COlI_REG I

OIl I I 8CUPOFF
REG_RLE

8PI_ADAI P2_ADRPORT! PORT2

ALl/(B)

EJIIREG2 I 0 El
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APPENDIXB-ProcessorOperations

ALUOperations

CUP ON

CUP OFF
A+B
A+B+C

A-B
B-A
A-B+C

B-A+C

A+B+1
CON[A - B]

AORB
AANDB
A XORB
ABS(A)
A
B
1SC(A)
2SC(A)
MAX(A, B)
MIN(A,B)
ST_DIV
CONT_DIV
END_DIV
PACK

Prevents overflow by limiting ALU output to 7FFF
or 8000HEX.

No overflow correction is performed.
Add inputs A and B.
Add inputs A and Bwith carry from previous

operation.
Subtract Bfrom A.
Subtract A from B.
Subtract Bfrom A with borrow from previous

operation.
Subtract A from Bwith borrow from previous

operation.
Add inputs A, B,and 1.
Conditional subtract. If (A- B)~ 0 result is A - B,

otherwise result is A.
Bitwise logical OR of A and B.
Bitwise logical AND of A and B.
Bitwise logicalXORof A and B.
Absolute value of input A.
Route ALU input A through ALU to ACC1.
Route ALU input Bthrough ALU to ACC2.
Convert two's complement to one's complement.
Convert one's complement to two's complement.
Maximum of A and B.
Minimum of A and B.
Start software divide of A/B.
Continue software divide (one instruction per bit).
End software divide with quotient and remainder.
Pack lower 8 bits of A and Binto 16-bit result
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THE PRINCETON ENGINE: A REAL.TIME VIDEO SYSTEM SIMULATOR

D. Chin, J. Passe, F. Bernard, H. Taylor, S. Knight
David Sarnoff Research Center

CN 5300, Princeton, NJ 08543-5300
(609) 734-2301 TELEX:(609) 734-2221

Abstract

The PrincetonEngineis a 29.3GIPSimageprocessing
systemcapableofsimulatingvideoratesignals- includ-
ingNTSCandHDTVvideo- in real-time.It consistsofa
massively-parallelarrangementofupto2048processing
elements.Each processingelementcontainsa 16-bit
arithmeticunit, multiplier,a 64-wordtriple-portregister
stack(onewrite, two read),and 16,000wordsof local
processormemory.Inaddition,aninterprocessorcommu-
nicationbus (IPC)permitsexchangesof databetween
neighboringprocessorsduringoneinstructioncycle.We
furtherdescribea newmethodof parallelprogramming
for DSPapplicationsandprovideseveralexamples.

tIIroduction

The designof an NTSCdigitaltelevisionhas required
extensivecomputersimulationsto verifydigitalsignal
processingalgorithms.High-levellanguageprograms
havebeenusedto simulatea few fieldsof the target
videosystem[1, 2]. Newsignalformatssuchas Ad-
vanced CompatibleTV
(ACTV) [3] also require
significantmanpowerand
simulationtime to obtain
acceptableresults. While
these simulationsare im-
portantto the designpro-
cess, they providelimited
informationaboutthe per-
formance of the actual
system under real-time
conditions.Thishasresult-
ed in a costlydevelopment
cycle in which hardware
prototypes are built for
each of several genera-
tions of experimentalsys-
tems.

C

micstepsperpixel. If eachpixelis clockedat 14MHz
(70nscycle)rate,a singleprocessorwouldhaveto be
ableto executeonealgorithmicstepevery20 picosec-
ondsto sustainreal-timeoperation.Thisisabouttwoor-
dersof magnitudegreaterthanthe nextgenera.tionof
supercomputers.[4]Inadditionto theintensivecomputa-
tionalrequirements,a real-timevideosimulationsystem
mustbe ableto continuouslysustainI/O at 14MHzor
better.

Numerousattemptshavebeenmadeat applyingsuper-
computeror multipleprocessorarchitectures°toimage
processingandreal-timevideosimulationproblems.Fig-
ure1comparesthedifferentapproachesintermsofpro-
cessortopology- howtheyaremappedontoanarrayof
pixels.Thefirstapproach( "A" in Figure1) employsa
single,veryhighperformancecomputationalnodeorsev-
eralnodessuchasa CrayX-MP.In theConnectionMa-
chine[5]system,64,000sequentialsinglebitprocessors
operatein a SingleInstructionMultipleData(SIMD)
mode.Pixeldata is mappedin a processorper pixel
mode,asshownin"B" inFigure1,fortheentir~arrayof

pixels. This methodis
also referredto as fine
grain parallelprocess-
ing,whereinmanysim-
pleprocessorsareused
to simultaneouslyper-
formthe samecompu-
tationon a largearray
ofdata[6].

D

~
A. SUPEFICOMPUTER

B.PRXESSCR PER PDCEl(SYSTOUC)

c. DISTR8JTEDPROCESSOR ARRAY
FORM.N PIXElS

o .000I'ROCESSCfiPERCOt.~

An alternativeto fine
grain architecturesfor
a multiple processor
system is the course
grained approach in

Figure 1. whichconsiderablyfew-
To Pixel Mapping Schemes. er processorsof great-

ercomputationalpowerareemployed.Onesuchsystem
fromNHK[7],usesstandardbit-sliceprocessorsaspro-
cessingelements.Upto eight16-bitprocessingunitsrun-
ningat7.16MHzandconnectedunidirectionallyhavebeen
implementedin thissystem.Eachprocessorcontainsa
replicationofa fullframeof imagedatainmemory,elim-

Processor

Theproblemof performingtrue,real-timevideosimula-
tionscanbecharacterizedin thefollowingterms:theal-
gorithmsnecessaryto implementan advanced,motion
adaptive,NTSCdecoderrequiresabout1400algorith-

Contributed Paper
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inatingmemoryaccesscontention.As shownin ap-
proach"C"in Figure1,eachprocessorexecutestheal-
gorithmfora specificregionof pixelsin theimageplane.
This systemhas been usedfor real-timeframe syn-
chronizingandmixing.

Anothermappingof processortopologyto an arrayof
pixelsis theScanLineArrayof Processorsapproach,
or SLAP[8]. In this system,a lineararrayof identical
processorsareconnectedina nearestneighborfashion
andareoperatedin anSIMOmode(asshownin "0" of
Figure1).Eachprocessorcontainsanintegerarithmetic
unit, registerfile anda singlestageof a shift register.
Asanimagescanlineis loadedintothearray,eachpro-
cessorlatchesonepixel.Algorithmex-
ecutionproceedswith processorsin
parallel.A 512processorSLAPimple-
mentationwitha 250nsinstructioncy~
cle timecanperformabout125 real
time instructionsfor each pixelof a
512x512image.A morerecentimple-
mentationof SLAPwill yield about
500 instructions[9]; however,extend-
ed instructions,suchas multiply,will
take as many as ten instructions.
Thus, real-timesimulationsof large
videosystemsarenotpossible.

TI'tI!
-..s

.. R.._0
8

to R._ a
110., 8

Severalarchitectureshavebeenpro-
posedwhichcombinefeaturesof both
coarseandfinegrainprocessing.One
sucharchitectureis theWarpComput-
er, a linearsystolicarrayof proces-
sorcells[11].Eachprocessorcellcon-
tainsa 32-bitmultiplierandALUunit
capableof sustaining10 Mflops.1/0
betweenprocessorcells occurs at
20MHz,andthecombinationofhigh,singleprocessorper-
formanceand1/0bandwidthareclaimedto makeboth
fineandcoarsegrainprocessingpossible.However,real-
timevideoandimageprocessingsimulationsaregreatly
limitedbya smallnumberofprocessingcells(see"B" in
Figure1) andthe needto interfacean VOframestore
buffer.Temporalprocessingacrossmultiplefieldsis lim-
ited by a mappingschemewhereeachprocessorcell
mustactasa finegrainprocessingelementfor a large
numberofpixels.

0UIPUIa

Figure 2.

ThePrincetonEnginecombinesfeaturesof bothcoarse
andfinegrainprocessingarchitectures.It is implemented
froma largenumber(upto 2048)of highspeed(14
MHz),singlecycle,16-bitprocessors.Processingofvid-
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eo is performedin a processorpercolumnarchitecture,
similarto theSLAPsystem(see"0" in Figure1).The
processorsaretightlycoupledby a communicationnet-
work whichsupportsnearestneighborexchangesof
dataina singlecycleandrandomexchangesbetween
anytwoprocessorsin a 64 processorboundaryin one
cycle. A local memorywith sufficientstoragefor 32
framesof videodata makesit possibleto implement
bothtemporalandverticalalgorithms.

SystemOperationOverview

TheinitialapplicationforthePrincetonEnginewillbe in
performingreal-timevideo simulationsof NTSCand

.SOURCE
SElECTION

PRINCETON ENGINE
III..,."'_

, DISPLAY
INTERFACE

11
HDSI'

CCMPI.IIeR

.ADCI

.DACI

, UNEARARRAY
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, ""'ARALLEL
, PRCCESSORS, with

"I NX 16X 161<
" I.OCALMEMORIES
,...,,

.........

_....
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I
I
I
I

_., ,. I
II I

I
:11

.~ ----.SYNC

.TESTSIGNAl.
GaERATION

, MUlTlPORTRAMOUTPUT, "......
~

",

NPUr I OUTPUT ""NQ

Princeton Engine System _ Overview

ACTVvideosystems.In the PrincetonEnginesystem,
digitizedvideois continuouslyshiftedintotheinputshift
register(topof Figure2). Aftera lineofvideoiscom-
pletelyloadedintothe registers,thevideois transferred
in parallelto the interprocessorcommunication(IPC)
buffers.Theprocessorcanthenfetchthedataandop-
erateon it locallyor globally.Afterall pixelsare pro-
cessed,theyaredownloadedto theoutputsectionwithin
a linetime.Inthisway,continuousvideocanbeproduced
attheoutput.Theprocessingshouldbecompletedinless
thana linetimeto achievereal-timesimulation.Forfour
times subcarriersampledNTSCdata, the maximum
numberof instructionsforreal-timesimulation,NRE' is:
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inputparallelloadperiod_ 910 70
. _ x ns 910'

Instructionperiod 70ns= Instructions

fora 910processorsystem.Thisis the totalnumberof
instructionsavailableto accomplishthe 1400algorithmic
steps requiredto implementthe exampleNTSCsystem.
In the PrincetonEngine,eachprocessormicro-instruction
can typically achieve three algorithmicsteps yieldinga
total capabilityof 2730algorithmicsteps.By doubling
thenumberofprocessorsto1820,NRE,is:

2 x 910 x 70ns = 1820instructions,
70ns

for a totalof 5460algorithmicsteps.

The PrincetonEngineachievesa linearspeedupin the
numberof instructionswhichcanbe executedwhilestill
maintainingreal-timeoperation.Likewise,this same
speedupcanberealizedbyhalvingtheinstructionperiod.

E~ine ControllerInputandOutput

All systemprogramcontrol,videoinputand outputis
containedin thecontroller.A VideoInputsectionwhich
allowssourcesignalselectionand
data conversion(AID and D/A
converter)is shownat left in Fig-
ure2. Upto 48totalbitsofvideo
inputsourcewiththreeindepen-
dentclockscanbeprocessed(six
8 bitsources,three16-bitsourc-
es,etc).A multibusinterfacebe-
tweenthehostcomputerandthe
controllerpermitsprogramand
controlcodeto be downloaded.
Withinthe controller,thereis a
16,000 instructionmemory(word
lengthis 89 bits).Thecontroller
transfersinstructionsfrom this
programmemoryby sendinga
streamof identicalinstructions
to each of the processingele-
mentsin thearray.Videodatais
transferredin parallelto thear-
ray of processors- one line of
video at a time - each processor
receivinga singlesample.The ,
overalltransferrate of the input Figure 3.
videodatais 1.3Gbitlsecond(48x 28.64MHz).Thecon-
trolleralso includesa videooutputtiminganddisplay
section.In thissection,a streamof pixels,64bitswide
(Le,eigi'it8 bit channels,four 16-bitchannels,etc.),is
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transferredfromthe arrayof processorsbackto the
outputand displaysectionat 1.8 Gbitlsecond(64 x
28.64MHz).Thearrangementofpixelsat outputiscom-
pletelyprogrammablevia the OutputTimingSequence
bus (OTS)withinthe GraphicalControlEnvironment
(GCE)andoccursinparallelwithinstructionexecution~

TheProcesslnaElement

Theenginecoreconsistsofanarrayof upto2048pro-
cessingelements.Figure3 showsa blockdiagramofthe
processingelement.Eachelementhasa 16-bit ALU, a
16-bit Multiplier,a64-wordtriple-portregisterstackand
a 16-bit address/dataexternalmemoryinterface.In ad-
dition,processingelementsareconnectedat thechiplev-
el via a 16-bitprogrammabledatabU$(IPC),whichsup-
ports rapid exchangesof data betweenprocessors.A
full complimentof processorscan realizea throughputof
29.3GIPS(2048x 14.32MHz).

The processingelementalsocontainsspecialhardware
supportfor mainta!ninglookuptables in externalmemo-
ry. Externaladdressingcan be of eitheran absolute,an
indirector a table indextype. Duringeach instructioncy-

NA_........_......_-IMD:_Da
NND:__DaII

Processing Element Block Diagram.

clememoryaddressescanbe directlyencodedintothe
immediatefieldof the instruction.Next,theaddresscan
begeneratedindirectlyfroma registeror theaccumula-
tor; finally,theaddresscanbe formedby combininga
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registervaluewith immediatedatato form
a tableindex.In tableindexmode,8 MSB
bits of immediatedata providea bit mask
index.Thismaskdetermineswhichbits of
the lowereightbitsformthe tableaddress.
Memoryaccessis completedin onecycle.
The immediatefield of any instructioncan
also be usedto loada data constantinto
theALU,Multiplieror on-chipmemorystack.

BROADCAST

IEEE Transactions on Consumer Electronics, Vol. 34, No.2, MAY 1988

· e-

~

APPLICATION' ADAPTIVEFlLTERNG. HISTOGRAMS

Broadcasting
Proc.ssor

Total throughputof the systemis signifi-
cantlyincreasedby theincorporationof mul-
tipleinternaldatapathswithintheprocess-
ing element.Thispermitsa highdegreeof
secondaryparallelisminprogramoperation.
Forexample,in filteroperations,a pixelcan
be shifted left, while simultaneously,an
ALUoperation,a multiplyoperation,andan
externalmemoryaccess are being per-
formed. The useof secondaryparallelismin thisway
resultsin at leasta 3:1 reductionin the numberof in-
structionswhencomparedto the numberrequiredona
conventionalmicroprocessor.

IIID-

Figure 4. Broadcast and Bypass IPC Modes.

k1teIprocessorCommunicationBus

The InterprocessorCommunicationBus(IPC)provides
highspeedexchangesof databetweenprocessingele-
mentsandthevideoinput/outputprocessinglogic.IPC
busoperationscanbe ofa broadcasttype(oneproces-
sorto many)or ofa bypasstype (wherethereareran-
domlengthnon-overlappingbidirectionalconnectionsbe-
tweenprocessors).A new IPC bus topologyfor the
entireenginecanbegeneratedintwoinstructions.Figure
4 illustratesthesetwocommunicationschemesandtheir
applications.

In the Broadcastmode(topof Figure4), one
processoris designatedas thesenderandas
manyof theotherprocessorsas are required
by thealgorithmcanbedesignatedas receiv-
ers. Datatransferis accomplishedin one in-
structionto any'of the processorswithinthe
transmitter's64-processorboundary.In the
worstcase(assuming2048totalprocessors),
it wouldtake five instructionsfromanyone
processortoall others.

Bypassingoperatesin a similarmanner,ex-
ceptmultipleprocessorscanbe connectedin
any pattern, providedno two pathscross.

Oncea bypasspatternis set,communicationis bidirec-
tional-e.g.leftandrightVOoperationssendcorrespond-
ingdatan processorsup or downstream,accordingto
the bypasspatternconfiguration.Connectionswithina
64-processorboundarywill requireonlyoneinstruction,
whilea worstcasebypasspatternwill requirefive in-
structions.Duringexchangeswhichrequiremorethan
one instruction,processorscancontinueto performall
other ALU, Multiplier,internal registerand external
memoryoperations.

Thiscommunicationtopologyis thekeyto implementing
horizontalfilteringalgorithms.And,becauseof thelarge
localmemoryandregisterstacksizes,verticalandtem-
poralfilteroperationscan be efficientlyperformed,as
well.Figures5 and6 illustratepossibleverticalandtem-
poral operationsusing local memory to store data for

LINEAR -VERTICAL

~-, P
1111

)
--""

. .. . .

.. . .. ..'. . ..t. .. .
. .. . :
. ....------

..

m

e--.-., .
\ .\ . . .., .. .'

. .,
APPLICATION'

IlERTICAL Ff4 FLYERS.NEAREST NEGHBOR CAl..CU..ATI)NS

Figure 5. Vertical Filter Operations.
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LINEAR -TEMPORAL
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1..1
D) Busses,unlikeprocessingelements,are
assumedto be reliable.This is also
the assumption in the PE.--..-.-.

" ---'---.
. .. ,

. ..
.

. .'
.
.

. .'I
. - - - - - - -' Faulttolerancefor videoapplicationsis main-

tainedin thePrincetonEngine,providedthere
are moreprocessorsavailablethanpixelsin

3-D FIR FlLTERS.NEARESTNEIGHBORCALCUlATIONS.TEMPORALP~ESSING I theparticulardisplayformat.Ina twocabinet

Figure 6 T I F'U 0 t' engine, there are positions for 1024 proces-. empora I er pera Ions. sors,whichis 114morethanthe numberre-
imagecolumns(N-1)and(N)inprocessors,P(N-1),and quiredforNTSCsignalprocessing.Adiagnos-
PN,respectively.Eachlocalmemorycanstorf)upto 32 tic programrunsduringsysteminitializationand tests
framesof 16-bitvideodataforonecolumn.Usually,only eachprocessor.Thos~processorswhichf~iI.areimmedi-
twoor threeframesat mostwillbestored.Localmemo. atelybypassed.Providedthereare sufficientproces.
ry will alsostorelookuptables,constantsandmodified ~ors,andregardle~sof the resultingbypassconfigura-
or intermediatefielddatathatmaybe of interestat dis- tion,allprogramswill rununaltered.
playtime.

APPLICATION:

Fault Tolerant Linear Array Model

Severalresearchershaveconsideredtheissueof imple-
mentingtestableand reconfigurablefault tolerantar-
rays[11,12].In Kumar[11],a designcriteriafor a suc-
cessfulmodelof fault tolerantcomputingis proposed.
Thismodelincludesthefollowing:

A) A linearprocessorarrangementwithlocalparallel
busses. The processor configuration and
IPC bus in the Princeton Engine (PE)
meets this criterion and is fully pro-
grammable.

B) Propagationdelayis assumedto be proportional
to wire length.Introduceunitdelaywhenevera pro-
cessoris bypassed. In the case of an iso-

lated faulty processor, PE bypassing
modes permit single instruction ex-
changes of data between adjacent pro-
cessors. In general, bypassing faulty
processors in the PE will meet this
criterion.

C) The clockrate is independentof the numberof
faults in the array. This criteria is met giv-
en the limit of the fault covering a
boundary of 64 processors. In the PE,
the I/O clock rate is independent of
the processor clock rate.

E) Faulttolerancedependson beingableto
connect good PE's into a linear connected
aITay.The IPC bus of the Prince-
ton Engine guarantees this.

GraDhical Programming

Thecomplexityofa systemof2048processorsrequires
a newmethodof programdevelopmentwhichenables
theengineerto implementalgorithmsat a highlevelof
abstractionwithouthavingto considerdetailsof code
generationforall thepotentialprocessorsin thesystem.
A softwaredevelopmentenvironment,whichpermitsa
highdegreeofprogrammingparallelism,hasbeenimple-
mented.Figure7 showsthe overallsystemsoftware
flow.The developmentsystemconsistsof four major
components:a GraphicalProgramComposer(GPC),a
GraphicalProgrammingEditor(GPE),the Concurrent
System Simulatorand Debugger(CSSD),and the
GraphicalControlEnvironment(GCE).

Signalprocessingengineersconceptualizesystemsin
termsof high-levelbuildingblocks,wherethefunctional
behaviorof eachblockis usuallywell understood.It is
the uniquecompositionof theseblockswhichcreates
newandnovelsystems.Simulationsfor suchsystems
usingconventionalprogramminglanguagesrequirea
changein thedesigners'conceptualframeworkfroman
inherentlyparallelonetoa sequentialone. InactualDSP
systemimplementations,however,processingis fre-
quentlyperformedinparallel.

.GEE

TheGPEpermitstheuserto symbolicallylayout anal-
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. a transcriptof operationsis maintained.

Environment. This includesdataslotsfor labels,lookup
tables,branchoperationsand immediate

fieldentries.Branchoperationsgivethesystemthecap-
ability to conditionallyexecutea stringof instructions
basedon the resultof an ALUoperation.Statuscondi-
tionsfor nearlyallALUoperationshavebeenprovided:
<=0,>0 >=0,=0,<>0, A>B,A<B,overflowandunder-
flow.Branchcontrolis achievedbyconditionallylocking
thoseprocessorswhichfail the statuscondition.They
remainlockeduntileithera conditionalunlockor global
unlockcommandis issued.TheGPCcodegeneratorin-
serts the correctbranch10codesinto the instruction
fieldto accomplishbranching.Upto256branch10'scan
beusedinonesimulation.
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DSP Library
Modules :

Engine

Figure 7. Software Development

gorithmusinga pictureofa singlepseudo-processor(re-
ferto Figure8). Eachinstructioniscreatedbygraphical-
ly routingdatabetweenvarioussourceanddestination
pointswithintheprocessor.Instructionflowis controlled
fromwithinthe GPEenvironmentby simpleinteractive
graphiccommandsusinga mousepointingdevice.Paths
areselectedbypointingto thegraphiciconrepresenting
theoperatoror registerwithintheprocessor.Forexam-
ple,referringto Figure8, Inst2 , a pathisselectedfrom
thememoryinputbuffer(01) tothemultiplierwherethe
productof a filtercoefficientanda pixelaregenerated.
Thefiltercoefficientvaluewas enteredvia the immedi-
atefieldandappearsonthedisplayas the!OOC3lable
on the multipliericon.At the sametime,thedatafrom
the memoryinputbuffer(01)is routedto the VObuffer
(IPC_BUF).

Themultiplierhasa programmableproductpickerwhich
enablesany16-bitsubrangeof the32bit productto be
selectedas outputIn thethirdinstruction,Inst3,the16-
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bitpickedproduct(PP)outputis routedto
theALUandstoredin theaccumulatorat
theendof theinstructioncycle.Inaddition,
data from the I/O buffer (IPC_BUF)is
sent"left"as indicatedin thegraphicallay-
out. At anyspecifictimewithintheGPE,
the usercan incrementor decrementin-
structions,return to the first or last in-
struction,insertor delete instructionsor
printouta graphicaltranscriptof theentire
program.

B

Programcontrolsand binarycodesfor the engineare
generatedautomaticallyby the systemfromthis tran-
scriptof graphicaloperations.In the PrincetonEngine
system,theuserbuildsa simulationdatabaseusingthe
GPEto implementprimitiveOSPfunctionssuchas FIR
filters. Figure9 showsthe blockdiagramfor a basic
five-tapfilter.Filtercoefficients,C1throughC5,are ini-
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Figure 8. GPE Example

respectively.The GPEprogramrequirestwelvemicro-
instructionsto performthe 35 algorithmicstepsneces-
saryto implementthisfivetap FIRfilter.Ingeneral,an
N-taphorizontalFIR filter can be programmedin N+8
processorinstructions.Figure8 showsthe GPEenvir-
mentandfirstthreeinstructionsof thehorizontalFIRFil-
terexample.

TheGPEimplementationstepsareas follows:

First,thecurrentpixelis loadedfromexternalmem-
oryintodatainputport,01,usingtheimmediatefield
for the address.Duringthe secondinstruction,the
immediatefieldcontainsthevalueof thefiltercoeffi-
cient, Cn, and is loadedinto multiplierinputport,
MPY(B).Thenthecurrentpixelis multipliedby the
coefficient,Cn,andagain,in parallel, thepixel(X)
is transferedto the IPC_BUF.Duringthe third in-
struction,theproductis summedintotheaccumula-
tor,while,inparallel,thepixel(X)isshiftedleft.Be-

or FIR Filter Program.

causeeachprocessoris performingtheshiftopera-
tionsimultaneously,at theendof the third instruc-
tioncycleeachprocessor'sIPC_BUFwillcontainthe
pixelfromtheprocessorto the right,(X+1). Figure
10showstheentiregraphicprogrammingsequence
for thetwelveinstructionprogram.Duringthefourth
instruction,this pixel mustbe storedin a register,
while, in parallel,the next shift operationis per-
formed.Thispatternof instructionsrepeatsto the

IX'I) IXI IXoII IX+2j

CI

,_ 0......

Figure 9. Five Tap FIR FiUer Example.
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Figure 11. GPC Example of DTV.

formed. Thispatternof instructionsrepeatsto the
leftandrightuntilall thepixelsaremultipliedbytheir
correspondingcoefficientsandsummedintotheac-
cumulator.

Itshouldbenotedthatthefrequentuseof theimmediate
fieldin the previousexampleillustratesthedegreeof
modularitypossiblein theprogrammingenvironmentof
thesystem.A filtermodulecanbecreatedinwhichthe
coefficientsare entirelyparameterizable.Foreachin-
stantiationof a particularmodule,the immediatefield
slotscanbefilledinwithappropriatecoefficientvalues.

G.f.C.

Mostsystemengineerswill usetheGraphicalProgram
Composer(GPC)to assemblevideoandDSPsystems
bycomposingblockdiagramsoftheirdesignideas.A ro-
bustlibraryof primitiveDSPfunctionshasbeencreated
using theGPE.Inaddition,a blockdiagramcomponent
has beencreatedfor each DSPfunction.Figure11
showsa DigitalTelevisionsystem[2]composedofGPE
buildingblocks.Engineerswill configurethe enginefor
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NTSCor anytelevisionstandard,entirelyvia theGPC.
Sincemostof theexistingvideosystems(NTSC,PAL,
etc.)willbeincludedina library,thesewillbecomea logi-
calstartingplacefornewusers.

The initialGPCenvironmentusesa commercialEWS
schematiccaptureandne~istingfacility.Thisprovidesa
robustgraphicaleditorinwhichtheusercreatesa block
diagramof thetargetsystemusingcomponentsfroma
DSPlibrary.ThisapproachprovidesDSPsystemde-
signersthesametools,symbolsandnotationusedby
otherengineerstoconstructsystemhardwareandVLSI
blockdiagrams.Oncethedesignhasbeencaptured,an
expansionprogramextractsthetopologyandcomponent
namesfromthedesignandlinkstogethertheresultingbi-
narycodesfromeachoftheindividualmodules.If thede-
signcontainslookuptables,thenthecorrespondingfile
namemustbeattachedto thesymbolfor thatfunction.
Whena particularDSPprimitivemodule(i.e.a newfilter
design)doesnot exist, it mustbe createdusingthe
GPE.

~

Developingsimulationdatabasesforcomplexvideosys-
temswill be a comprehensiveand timeconsumingtask.
In mostengineeringfacilities,a single,full capacitysimu-
lationsystemwill besharedamongthecommunityof en-
gineers.Inorderto enablehierarchicalmodulesto bede-
veloped and debugged,we have implementeda host
computer based softwaresimulationsystem,the Con-
currentSystemSimulatorand Debugger,or CSSD.

The CSSDis a LISP-based,object-orientedsimulationof
the enginesystem.It is usedto developalgorithmsand
debugapplicationcode.Eachengineprocessoris modeled
as an independentobjecllntemal registersand external
memoryare accessibleas data arrays associatedwith
each processorinstance.Processorsexchangedataby
sendingmessagesfromoneprocessorobject to another.
Duringeach instructiontime, a global message(89 bit
word length)is sent to all processors,which, in turn,de-
code the operandsand executethe appropriateopera-
tions.At anytimeduringthe simulation,the usercanex-
amineinternalregistersor statusby sendinga message
to the specificprocessoror processors.CSSDsupports
edit and debugoperationsincludingbreak"point,tracing
andsinglestep.

~

TheruntimeenvironmentonthePrincetonEngine,the



PROCESSORII PRoa:ssoRn PROCESSOR13 ,., PROCESSORI9IG

~
V_ PiaI(A"

,.,

...
OU11'I1l'VIDEO:Al A2 A3 ... A910

OtTI'PtTl'SEQUENCE:<Pn>-r) I 2 3 ... 910
(Re.i"er) I I I ... I

294

(A) NORMAL OPERATION

Re.ilter'1
Re.ilw 12
h.ilw '3
Re.iI.er t4

(B) PROSCAN OPERATION
PROCESSOR.I PRoa:ssoR n PROCESSOR13

Replter 'I
Replter n
Rep..er '3
Rep..er t4

.. E Li_
OU11'tTl'VIDEO:RI R2 R3 .. R910

OU11'UTSEQUENCE:(Pracenor) I 2 3 _' 910
(Re.i..er) I I 1._ I

IEEE Transactions on Consumer Electronics, Vol. 34, No.2, MAY 1988

and selectionof systemclocksare
accomplishedundertheGCE.Addi-
tionalcontrolcommandspermitusers
to modifysimulationattributesduring
runtime. Thispermitsordinaryvideo
systemcontroloperations,suchas
changingtint, saturationand con-
trasttobeperformedin real-time.

.,. PROCESSOR 1910

The ability to make real-timeup-
datesto the entiremicrowordof the
processorinstructionprovidesa ro-
bust mechanismfor modifyingfilter
coefficientsandothersimulationcon-
trol variables.Withinthe GCEenvi-
ronment,thevalueofanyfieldofan
instructionin thesequencerprogram
memorycanbe changedduringthe
verticalblankinginterval.

M.i8 VMS.. Pia8l(UIO

...iD8)o Pia8l(lttO)

~

f. OM....
II 12 13 _. 1910
123_.910
2 2 2_ 2

Dynamicconfigurationof the output
displaylayoutisprovidedthroughthe
Output Timing Sequencer (OTS)

bus,whichisprogrammedundercontroloftheGCE.The
OTSbuscontrolsthe orderof pixelsbeingsentto the
videooutputchannels.Unlikemostparallelmachines,the
dataoutputprocessingof thePrincetonEngineis com-
pletelyrandom,as if all theoutputdatawerestoredina
single RAM.Furthermore,each of the 64-outputbit
streamscanselectfromoneof fourregistersfromeach
processor.If the64-outputbitsofa 2048processorma-
chineareprogrammedas 8 channels,each8 bitswide,
thenthetotalnumberof8-bitregisterswhichcanberan-
domlyaddressedbyitscorrespondingOTSbuswouldbe:

Figure 12. OTS Programming of Progressive Scan.

GCE, has the lookand feel of a studio - as thoughthe
designeris usinga signalgenerator,logicanalyzerand
appropriatemonitorsto evaluatea proposedsystemon
actualvideosignals.Thereis a highdegreeof flexibility
in signalsourceselectionaswellas outputdisplaylay-
out.Thedisplaycanbeconfiguredfor picture-in-picture
processingor with graphicoverlaysfor histogramsor
non-videoanalysis.If desired,theusercan makesmall
changesto the GPEor GPCbaseddesign,re-compile
andre-runa simulation.

Actualcontrolof an enginesimulationis accomplished
throughtheinteractiveGCEprogramrunningonthehost
computer.A completeassemblyofengineinstructionbi-
narycodesaredownloadedbythehostviaa multibusin-
terfaceintotheprogrammemorylocatedonthecontrol-
lerlogicboard.Whena simulationis invoked,thestream
of instructionsarepassedin parallelfromthe 1/0con-
trollerto eachof theprocessors.Thecontrolprogram
runningon the hostmustperformall the initialization
functionsincludingpreloadingprocessormemorywith
programdataandrunningsystemdiagnosticsto verify
thatthecorrectnumberofprocessorsareoperational.

Simulationattributes,suchas videosources,clockand
syncsignalgeneration,are all controlledby the GCE.
Controlcommandsequencesmustbesenttothecontrol-
ler at simulationinitialization.Inaddition,selectionand
planningof the outputdisplaylayout,pixelplacement,

(# of processors)X (# of registers/channel)=2048 X4
=8192

TheOTSbushasa processoraddressfieldanda regis-
teraddressfield.Figure12showsa pictorialrepresenta-
tion of the outputRAMfor oneof four outputgroups
(each16-bitswide).The OTScontrolof outputdata
readfromtheoutputRAMisgivenbytheoutputproces-
sorsequenceandregisternumbers.Ina normaloutput
sequence,theOTSbuswill fix theregisteraddressat 1
andsequentiallyaddresstheprocessornumberasshown
in Figure12A. Thiswouldoccuranytimeoneparticular
channelneedstobe transferredto theoutputat 14MHz.
In thecaseof progressivescan,thesecondline,or the
computed,imaginaryline,has its pixeldata storedin
register2 asshownin Figure128.TheOTSbuswillsee
quentiallyaddressthe processorwith the registerad-
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dressfixedat 1 andthenchangetheregisteraddressto
2 at theendof thefirstline.Theoutputsequencerateis
28MHzforprogressivescanoperation.

Therearesomecasesinwhichit wouldbenecessaryto
useall fourregisterstogeneratethecompletedisplay.In
thecaseof a multiplePicture-in-a-Picture(PIP)simula-
tion,register1willstorethemainpicturedataandregis-
ters2 through4 will be usedto storeadditionalpicture
inserts.

RunningasimulationonthePrincetonEnginerequiresas-
semblingthreemajorGCEprogramsegments.Thefirst
segmentis theSIMDprogramcode,a run-timesequence
of instructionsfortheprocessingelementsimplementing
all thealgorithmsin thetargetsystem.Thissequenceof
instructionsis the resultof thedesignexpansionof a
GPC-baseddescriptionof thesystem.Thesecondseg-
mentis theoverallcontrolprogramwhichmustpreload
anytablesin processormemory,switchtheappropriate
videosourcesandselecttheOutputTimingSequencer
registers.Wrappedaroundthesetwosegmentsof the
GCEis a thirdsegmentwhichis an interactiveprogram
runningon the hostcomputer.Theengineerinteracts
withthissegmentto organizetheoutput,to changerun-
timeparametersandto startthesimulation.Thisinter-
activesegmentmustloadtheprogramandcontrolseg-
mentsintothecontrollerandperformanyof themultibus
operationsnecessaryto transferdataandprogram,as
wellasbeginprogramexecution.

mplementation

InitialPrincetonEnginesystemswill be comprisedof a
sufficientnumberofprocessorsto implementACTVand
HDTVsystems(1216and1536processingelements,re-
spectively).A system is implementedin processor
boardseachwith 32 PROCIC'sand 16 I/O IC's.The
processorboardsare22"x17",contain12,000holesand
havebeenimplementedusinghighdensitydiscretewire
technology.EachPROCICcontainstwoprocessingele-
ments.ThePROCandI/OIC'shavebeenimplemented
in two 75,000gate, 1.5micron,CMOSgatearrays.
EachICispackagedina 223pingridarray.Localmemo-
ry consistsof four 16Kx4staticRAMSper processor
whichare containedon a daughterboardassembly
mountedadjacenttoeachdoubleprocessorIC.

Thespeedof the PROCIC is currentlylimitedby the
gate-arraydesignedmultiplier.Webelievethata custom
designof thePROCchipwouldrealizeinstructionrates
around30MHz.
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AnEnginecabinetcontainseightprocessorboardsfora
totalof512processors.All controllerandanalogtodigi-
tal interfacesare containedin a separatecabinet.A
1536processorPrincetonEngineconsistsof foursmall
cabinetsandconsumestwokilowattsofpower.

Summary

Thispaperdescribeda powerfulparallelcomputerarchi-
tecturewhichhasbeenorganizedspecificallyfor video
andimageprocessing.Thisarchitecturecombinesa high
speeddualprocessorIC withan 1/0ICspecificallyde-
signedtoperformveryhighspeedvideosimulationcom-
putationaltasks.Theapproachmakespossiblefor the
firsttime,true,real-timesimulationsof verylargevideo
systemsandpermitsanentirelynewdesignmethodology
toberealizedinwhichengineerscanexploretheirdesign
ideasinteractively.In addition,the systemcan be ex-
pandedfroma single64-processorboarduptoa system
totaling2048processors,with full upwardcompatibility
of GPElGPCbasedlibrariesand makingthe startup
costlow.ThePrincetonEnginesystemwillbeusedinthe
developmentofsignalprocessingfunctionsandfeatures
for existingTV standards(NTSC,PAL,...),as wellas
to definesignalformatsfor ACTVandHDTV.

Whiletheemphasisofthispaperhasbeenonanapplica-
tion specificparallelcomputer,the SIMDarc~itecture
usedhereis alsoapplicableto thesolutionof a broad
rangeof problems.SIMDmachineshavebeenusedto
solvea varietyofproblemsincludingFFT's,terrainmap-
ping,fluiddynamics[13],circuitsimulation[14]andlogic
simulation[15].Theyhavealsobeenproposedfora va-
rietyof othercomputationalproblemsincludingICpro-
cessanddevicesimulationanaanimation.
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