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We use equivalent electrical circuits to ana-
lyze the effects of large parasitic
impedances existing in all sample probes on
four-terminal-pair measurements of the
ac quantized Hall resistance RH. The circuit
components include the externally mea-
surable parasitic capacitances, inductances,
lead resistances, and leakage resistances
of ac quantized Hall resistance standards, as
well as components that represent the
electrical characteristics of the quantum
Hall effect device (QHE). Two kinds of
electrical circuit connections to the QHE
are described and considered: single-se-
ries "offset" and quadruple-series. (We
eliminated other connections in earlier

analyses because they did not provide the
desired accuracy with all sample probe
leads attached at the device.) Exact, but
complicated, algebraic equations are
derived for the currents and measured quan-

tized Hall voltages for these two circuits.
Only the quadruple-series connection circuit
meets our desired goal of measuring RH

for both ac and dc currents with a one-stan-

dard-deviation uncertainty of 10-8 RH or
less during the same cool-down with all
leads attached at the device. The single-
series "offset" connection circuit meets our

other desired goal of also measuring the
longitudinal resistance Rx for both ac and
dc currents during that same cool-down.
We will use these predictions to apply
small measurable corrections, and uncer-
tainties of the corrections, to ac measure-
ments of RH in order to realize an intrin-
sic ac quantized Hall resistance standard of
10-8 RH uncertainty or less.
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1. Introduction

The integer quantum Hall effect (QHE) [1-3] is being
used in many laboratories [4-9] in an attempt to realize
an intrinsic ac resistance standard by employing ac
bridges to compare ac quantized Hall resistances RH
with ac reference standards. Unfortunately, the mea-
sured values of the ac quantized Hall resistances RHhave
varied with the applied frequency f of the current, and
differed from the dc value of RHby at least the factor
10-7 RHat a frequencyfof 1592 Hz (where the angular
frequency w = 27rf is 104radls). Furthermore, sample

probe leads had to be removed at the device in these
experiments to even achieve this disappointing result.
Removing sample probe leads at the device precludes
measuring many of the parasitic impedances, which we
will show here can be important. Removing leads also
precludes measuring both RHand the longitudinal resis-
tance Rx during the same cool-down, which has been
found to be necessary [10] in order to obtain reliable
values of RHwith direct (dc) currents, and may be even
more vital in ac measurements because the measured ac
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values of Rx have also been found to be frequency-de-
pendent [4,5,11].

Our desired ultimate goal at NIST is to measure both
RHand the longitudinal resistance Rx during the same
cool-down using both ac and dc currents with all sample
probe leads attached at the device, and to do this with a
one-standard-deviation uncertainty of 10-8 RH or less.
We require an uncertainty this small because the com-
bined one-standard deviation uncertainty of the entire
NIST calculable capacitor chain [12] which provides the
System International (SI) value of RHis only 2.4 X 10-8
RH. Thus, we need to do better than that combined
uncertainty in order to verify and replace parts of the
calculable capacitor chain.

The observed 10-7RHdeviation due to the frequency
dependence of RHin ac quantized Hall resistance exper-
iments is therefore a serious problem that must be ad-
dressed. This is the final paper in a series that tries to
adequately reduce or account for the frequency-depen-
dent effects of parasitic impedances existing in all ac
quantized Hall resistance standards. We believe this pa-
per accomplishes that purpose, and that an intrinsic ac
quantized Hall resistance standard can be realized with
an uncertainty of 10-8 RHor less with all sample probe
leads attached.

2. Our Strategy

We investigatethe effects of parasitic impedances on
measurements of the ac quantized Hall resistance RHby
using equivalent electrical circuits to represent ac quan-
tized Hall resistance standards. Each circuit component
is a discrete, externally measurable quantity. The dis-
crete components of the ac quantized Hall resistance
standards consist of: (a) capacitances and leakage resis-
tances to the shields of the sample probe; (b) series
inductances and series resistances of the sample probe
leads; (c) wire-to-wire capacitances between pairs of
conducting surfaces of the quantum Hall effect device,
the sample holder, and the bonding wires between them;
and (d) quantized Hall resistances, longitudinal resis-
tances, and voltage generators within the quantum Hall
effect devices themselves. These circuit components ac-
count for the externally measurable device parameters
and parasitic impedances of the standards. We believe
these equivalentcircuits are the simplest complete repre-
sentations of ac quantized Hall resistance standards.

Exact algebraic equations for the currents and quan-
tum Hall effect voltages of the standards are derived
from these circuits. The equations are complicated; it
required many months to derive and check the algebra,
and to numerically confirm test cases for each of the
two circuits finally considered. We were therefore very
selective in choosing which circuits to analyze.

--. -----

Considerable effort had been expended in our previ-
ous papers to reach this final selection and analysis
stage. Reference [13] calculated the effects oflongitudi-
nal resistances in quantum Hall effect devices for vari-
ous kinds of multiple-connections to the devices. (Mul-
tiple-connections will be explained in Sec. 7.) The exact
equations for the currents and quantum Hall voltages
derived in Ref. [13] should be used for the corrections
that result from parasitic resistances in the sample
probes when making dc measurements of quantized
Hall resistance standards. Reference [14] described pre-
cision experimental verifications of these corrections for
several multiply-connected dc circuits. Reference [15]
found approximate equations for some of the currents in
single-series "normal", double-series, and quadruple-
series connection circuits when the effects of capaci-
tances-to-shield and leakage resistances within the sam-
ple probes were included. Most of the capacitances-to-
shield arise from the capacitances between the inner and
outer conductors of the coaxial leads and connectors
within the ac quantized Hall resistance standard; a
smaller amount arises from the capacitances between
the quantum Hall effect device plus sample holder and
the surrounding conducting surfaces of the sample
probe. Finally, Ref. [16] found the exact equations for
the effects of capacitances-to-shield, series resistances,
series inductances, and leakage resistances within the
sample probes; this analysis was done for single-series
"normal", single-series "offset", double-series, and
quadruple-series connections.

Two circuits in Ref. [16] showed promise for further
consideration: single-series "offset" and quadruple-se-
ries connections to the quantum Hall effect device. In
this paper, we now include in these two circuits the
effects of wire-to-wire capacitances between pairs of
inner conductors. Significant wire-to-wire capacitances
can exist between pairs of conducting surfaces of the
quantum Hall effect device, the sample holder, and the
bonding wires between them.

A brief explanation of the dc quantum Hall effect is
given in Sec. 3. Section 4 describes our equivalentelec-
trical circuit model of a quantum Hall effect device, and
Sec. 5 incorporates that circuit into the equivalentcircuit
of an ac quantized Hall resistance standard. The single-
series "offset" circuit is explained and analyzed in Sec.
6. We will find that the single-series "offset" circuit
does not meet our goal of measuring the quantized Hall
resistance RHto an uncertainty of 10-8 RHor less, but it
does provide the means to adequately measure the ac
longitudinal resistance Rx and to then apply corrections
to the measurement. Section 7 considers the quadruple-
series connection circuit; the predictions for that circuit
do meet our measurement uncertainty goal for RH.
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3. DC Quantum Hall Effect

The quantum Hall effect (QHE) has been success-
fully used as an intrinsic dc resistance standard. In the
integer dc QHE [1-3], the Hall resistance RHof the ith
plateau of a fully-quantized, two-dimensional electron'
gas (2DEG) is RH(i)= VH(i)/IT,where VH(i)is the quan-
tum Hall voltage measured between potential probes
located on opposite sides of the device, and h is the total
current flowing between the source and drain current
contacts at the ends of the device. Under ideal condi-
tions, the values of RH(i) in standards-quality devices
satisfy the relationships RH(i)=h/(e2i) = RK/i, where h
is the Planck constant, e is the elementary charge, i is
an integer, and RK is the von Klitzing constant, RK::=
25 812.807 fl [17]. However, the conditions are not
always ideal. The values of RHcan vary with the device
temperature T [18] and with the applied current h [19].
Thus the measured dc values of RH(i) are not necessarily
equal to h/(e2i).

The current flow within the 2DEG is nearly dissipa-
tionless in the quantum Hall plateau regions of high-
quality devices, and the longitudinal resistances Rx(i) of
this standard become very small overranges of magnetic'
field in which quantized Hall resistance plateaus are
observed. The dc longitudinal resistance is defined to be
Rx(i) = Vx(i)/h, where Vx(i) is the measured longitudi-
nal voltage drop between potential probes located on the
same side of the device. The dc values of Rx(i) can also
be temperature [18] and current [19] dependent.

4. Equivalent Electrical Circuit of a QHE
Device

The inset of Fig. 1 shows a QHE device for the case
when: (a) the magnetic flux density B is directed into
the figure from above; and (b) an applied current h of
negatively-charged electrons enters the device source
contact pad S' and exits the drain contact pad D'. Under
these conditions the drain contact pad D' and the poten-
tial probe contact pads 1', 3' , and 5' at the device periph-
ery are at higher potentials than contact pads S', 2', '4',
and 6'. If a ground potential is applied near the source
S" then contacts D', 1', 3', and 5' have potentials near
the quantum Hall voltage VH(i),and contacts S', 2', 4',
and 6' are near ground potential. The higher potentials
are represented in the figure inset by thicker lines on the
device periphery. VH(i)becomes - VH(i)on current re-
versal.

Outside the device, the current direction h is labeled
in the opposite direction to the flow of the electrons,
followingthe convention that the current direction is that
which a positive charge would take. We cannot assume

positive charge carriers inside the device, since this
would yield an incorrect sign for the Hall voltage.

Shaded curves within the device show the current
flow pattern for this case. The current enters one corner
of the device, and exits at the opposite corner. The flow
direction reverses on current reversal. Current enters and
exits the other two diagonal corners on magnetic field
reversal. Shaded arrows pointing in the opposite direc-
tion to h indicate the electron motion, and are reminders
to the reader that the current within the device isactually
composed of electrons moving through the 2DEG in the
opposite direction of the conventional current direction.
The x axis of our coordinate system is directed along the
device, with the y axis pointing across the device.

Fig. 1also shows our equivalent circuit of the device.
The device contact pads provide electrical access to the
2DEG at the source S', the drain D', and the potential
pads 1' through 6'. Each contact pad is located at the end
of an arm of the QHE device. Every arm in the equiva-
lent circuit has an intrinsic resistor whose value isRH(i)/
2. We assume that the device is homogeneous, i.e., that;
(a) the quantized Hall resistances RH(i)are all measured
on plateau regions; (b) their values are the same on all
the Hall potential probe sets; and (c) they are all mea-
sured at the same magnetic flux density value B. The
values of RH(i) can, however, vary with temperature
[18] and current [19] as long as they are the same for
each Hall probe set.
. The values of RH(i) could also vary with frequency,
but our calculations of the intrinsic impedance of the
2DEG due to the internal Hall capacitance across the
QHE device [20] predicts a negligible dependence of
RH(i) itself. We therefore greatly simplify the model,
and assume temperature and current dependent dc val-
ues for the RH(i)/2 resistances in Fig. 1 and throughout
this paper. (Intrinsic in-phase frequency-dependent cor-
rections to the dc values of RH(i) could be inserted into
our final equations if these corrections are later found to
be significant, and if their algebraic relationships are
known.)

The potentials at the ends of the arms at contact pads
S" l' through 6', and D' are produced by diamond-
shaped arrays of voltage generators. Ricketts and Ke-
meny [21] first used these diamond arrays in equivalent
circuits. Then Delahaye [22], and later Jeffery, Elmquist,
and Cage [14] used ring-shaped voltage generator ar-
rays.Although both types of arrays give essentially iden-
tical results [13], our calculations are much simpler with
the diamond arrays when longitudinal resistances are
included in the circuits [13]. We therefore use diamond
arrays.

A voltage generator, labeled VASand located between
a pair of arms A and B in the circuit, produces a voltage
defined as [21]
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_RH(i)
1

+ IVAS= ---y- h - Is , (1)

where h and Is are the magnitudes of the currents flow-
ing in arms A and B of the circuit. The currents IAand
Is within the absolute quantity sign ofEq. (1) are added
ifthey both enter or both leavethe voltage generator, and
are subtracted if one current enters and the other current

leavesthe generator. Since the voltages produced by the
generators are functions of RH(i), their values can vary
with temperature and current. The arms A and B in the
diamond-array voltage generator definitions can be the
external arms S', l' through 6', and D', or the four
internal segments containing longitudinal resistances ra,
rb,re, and rd (which will be described later in this sec-
tion).

We assume in the simple case of Fig. I that there are
no currents in potential arms l' through 6' , so
Ia=Ib =Ie =Id = IT. Since there are no currents in the
potential arms, this means that all of the voltage
generators shown in Fig. 1 have magnitudes VAB=
[RH(i)/2]IITI.For clarity, the voltage generators are indi-
cated in the figure as batteries whose positive terminals
are oriented to give the correct potentials at the end of
each arm. As an example: if the potential at contact pad
S' is 0, then the potential Vs' at contact pad 5' of the
quantum Hall effect device is then Vs'= [RH(i)/2]IT+
rdh + [RH(i)/2]lhl= [RH(i)+ rd]h = VH(i)+ rdIT;and the
potential V6, at contact pad 6' is V6,= [RH(i)/2]IT+
rdIT - [RH(i)/2]lhl = rdIT'

The applied ac current IT alternates direction, so the
voltage generators reverse sign each half-cycle. Thus,
for the part of the period in which h flows in the direc-
tion indicated in Fig. 1, the voltage generators have the
polarities shown. Half a period later IT changes direc-
tion, and all the voltage generators reverse polarities.

The circuit elements ra,rb,re,and rdin Fig. 1represent
real (in-phase) longitudinal resistances within the
device. Longitudinal resistance values are obtained by
potential difference measurements along a side of the
device in the x direction. For example, the longitudinal
resistante RxC2',6') between contact pads 2' and 6' is

Rx(2' ,6') == Vx(2' ,6') [V2, - V6,]
IT IT' (2)

where VxC2',6') is the voltage difference measured be-
tween contact pads 2' and 6'. Referring to Fig. I,
Vx(2',6') = V6e+ reIT- Vc4 + V4b + rbh - Vb2.Since no
current flows through arms 2', 4', or 6' in this example,
V6c= Vc4 = V4b = Vb2 = [RH(i)/2]IITI. Therefore

Rx(2',6') = Rx(l ',5') = rb + re.

We will discuss the longitudinal resistances further in
the next section, but note here that their values can be
temperature [18] and current [19] dependent.

The quantized Hall resistance RH(3',4') measured be-
tween contact pads 3' and 4' in Fig. I is

R (3
' 4 '

) = VH(3',4') = [V3,- V4,] = [Ve4 + Ve3] = R (
'

)
H , - IT IT h HI.

(4)

The device shown in Fig. 1 is homogeneous, i.e., the
quantized Hall resistances RH are all measured on
plateau regions, their values are the same between all
the Hall potential probe sets, and they are all measured
at the same magnetic flux density. Therefore

RH(1',2') =RH(3',4') =RH(5',6')= RH(i). (5)

Note once again that RH(i) can be a function of temper-
ature and current, and can differ from the ideal value
h/(e2i).

The circuit in Fig. 1 represents a QHE device im-
mersed in liquid helium and cooled well below 4.2 K, so
that the temperature dependence corrections to RH(i)are
negligible or small. It would be nice if this circuit was all
that was required when using the device as an ac resis-
tance standard, but life is not so simple. There are large
parasitic impedances within the ac standard that can
significantly affect the measured values of the ac quan-
tized Hall resistance. The next section describes the ac

quantized Hall resistance standard and the parasitic
impedances.

5. Equivalent Electrical Circuit of an AC
QHE Standard

(3)

The quantized Hall resistance RH(i) of an ac QHE
resistance standard (ac QHRS) can be experimentally
compared with the impedances of ac reference stan-
dards using ac measurement systems. Like other labora-
tories, NIST plans to use ac resistors as reference stan-
dards, and an ac ratio bridge. measurement system to
make the comparisons.

Figure 2 shows an equivalent electrical circuit repre-
sentation of an ac QHRS in which the QHRS is being
measured with an ac bridge using four-terminal-pair
[23,24] techniques. We use four-terminal-pair tech-
niques so that error contributions from the ac QHRS, the
ac reference standard, and the ac bridge can all be ana-
lyzed separately. Neither the ac reference standard nor
the ac ratio bridge are shown in the figure. This circuit
of an ac QHRS is rather detailed, so we explain it one
step at a time.
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Fig. 2. An equivalent electrical circuit representation of an ac QHE resistance standard with single-series "offset" connections to the device. The
symbols are explained in Sec. 5. See Sees. 6.1 to 6.3 for the circuit analysis. The quantized Hall resistance is being measured in an ac ratio bridge

using four-terminal-pair [23,24] measurement techniques. The ac ratio bridge is not shown in the figure, nor is the ac reference impedance standard
with which the QHE standard is being compared.

The ac QHRS of Fig. 2 is bounded by an electrical
shield indicated schematically by thick lines. Actual
shields have complicated surface geometries. They con-
sist of: (a) conductive surfaces surrounding the QHE
device and its sample holder at liquid helium tempera-
tures; (b) the outer conductors of eight coaxial leads
within the sample probe; and (c) the outer conductors of
eight coaxial leads extending from the top of the sample
probe to room temperature access points S, 1 through 6,
and D. (The electrical shields will als.obe referred to in

the text as "outer conductors".) To simplify the figure,
we label only currents in the inner conductors.

The ac QHRS has electrical access at room tempera-
ture via four coaxial measurement ports labeled Inner/
Outer, Detector, Potential, and Drive. These four ports
are used in the four-terminal-pair measurements
[23,24], where each coaxial port is referred to as a
"terminal-pair". The four coaxial ports are connected to
room temperature access points S, 6, 5, and D in the
figure. (We will explain in Sec. 6 why access points 6
and 5 were chosen rather than points 4 and 3.)
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Proper four-terminal-pair measurements are not easy,
and we will discuss only the essential requirements. A
great advantage of using this measurement technique is
that the ac QHRS can be analyzed separately from the
ac ratio bridge and from the ac reference standard.

The ideal four-terminal-pair measurement definition
[23,24] of RH(i) is satisfied by the following three simul-
taneous conditions: (1) the current lorat the Drive coax-
ial port is adjusted so that there are no currents in the
inner or outer conductors of the Potential coaxial port,
i.e., IPt= 0; (2) the potential difference is zero across the
inner and outer conductors of the Detector coaxial port;
and (3) there are no currents in the inner or outer con-
ductors of the Detector coaxial port, i.e., lOt= O.

It is implicit in the four-terminal-pair definition that
each coaxial port is treated as a terminal-pair, and that
the current in the inner conductor of every port is equal
and opposite to the current in the outer conductor (the
shield) of that port. Coaxial chokes [25] (located outside
the ac QHRS and therefore not shown in the figure)
assure that this equal and opposite current condition is
satisfied for each of the four terminal-pair ports in the
circuit. The current lOtexits the ac QHRS at the Inner/
Outer port and enters the ac reference standard (not
shown). .

A "yirtual" short has been drawn in Fig. 2 as a line
between the shield and inner conductor at the Detector

coaxial port to indicate four-terminal-pair condition
number (2). We let the Detector potential be zero, i.e.,
VOt=O. .

The reader will recognize the equivalentcircuit repre-
sentation of the QHE device located in the central regi<;>n
of Fig. 2, with the same magnetic field and current
directions as Fig. 1. There are now currents in the side
arms of the device, so the voltages generated are differ-
ent than those in Fig. 1 and Sec. 4. For example
VID= [RH(i)/2]lla- llf.

The device and its contact pads S', l' through 6', and
D' are cooled well below 4.2 K to minimize temperature
dependent effects [18]. The device is mounted in a sam-
ple holder at the bottom of the sample probe. Thin wires
connect the device contact pads S', 1' through 6', and D'
to corresponding points on the sample holder. The sam-
ple holder is not explicitly shown, so points S', l'
through 6', and D' in the figure can also be considered
as part of the sample holder.

A coaxial lead extends from each liquid helium tem-
perature point S', l' through 6', and D' to corresponding
room temperature access points S, 1 through 6, and D
located outside the sample probe (but still within the ac
QHRS). The inner conductor of each coaxial cable has
a resistance rs, rl through r6, or ro. This resistance in-
cludes the contact resistance to the 2DEG, the wire
resistance connecting a contact pad on the device to a

point on the sample holder and then to a coaxial lead,
and the inner conductor resistance of that coaxial lead.
(Wecombine these resistances into a single resistance to
make the circuit as simple as possible.)

The inner conductor coaxial lead resistances vary
with the liquid helium level in the sample probe. They
can be measured pair-wise (using room temperature
access points S, I through 6, and D) as a function of
liquid helium level via two-terminal dc resistance mea-
surements by temporarily replacing the QHE device
with electrical shorts at positions S', l' through 6', and
D'. The cooled inner conductor coaxial lead resistances
are typically each about 1 n in ac quantized Hall resis-
tance standards. The outer conductor coaxial lead resis-
tances depend on the type of coaxial cable, and their
values also vary with liquid helium level. The shields
will be shorted together at the sample holder end of the
NIST sample probes, but electrically isolated elsewhere,
so their two-terminal resistances can be measured pair-
wise. Typical outer conductor values range between
about 0.1 n and 1 n in ac quantized Hall resistance
sample probes.

Each sample probe lead has an inner conductor induc-
tance Ls, LI through L6, or Lo that is electrically con-
nected in series with the lead resistances rs, rl through
r6,or ro, producing lead impedances Zs,Zl through Z6,or
Zo,where

Zs = rs + jwLs, (6)

etc. (We use the symbol j, rather than the symbol i, to
denote the 90° out-of-phase component of Zs in Eq. (6)
to avoid confusion with the quantum Hall plateau num-
ber i.) Due to severe space limitations in Fig. 2, these
impedances are unconventionally drawn as resistors
within rectangles.

Just as for the lead resistances, the inductances can be
measured pair-wise at room temperature access points
S, 1 through 6, and D as a function of liquid helium level
via two-terminal ac measurements by temporarily re-
placing the QHE device with electrical shorts at posi-
tions S', l' through 6', and D'. The inductance of the
inner conductor lead of a typical ac QHE sample probe
is about 1 X 10-6 H. We assume that the bonding pad
wires at the device are thick enough to not significantly
vibrate in the magnetic field when ac currents flow
through them [4], but (if necessary) the out-of-phase
"inductance" generated by this resonant frequency vi-
bration [4] could be included in the lead inductances.

The eight coaxial leads, labeled S, I through 6, and D,
each have an inner and an outer conductor. The outer
conductors of the coaxial leads will be connected to-
gether outside the sample probe to help satisfy the four-
terminal-pair measurement conditions. As mentioned
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earlier, the outer conductors of these leads act as electri-
cal shields, and are represented schematically as thick
lines in Fig. 2. Other outer conductors of the ac QHRS
also contribute to the thick lines: for example, the
shields around the QHE device and the sample holder.

Large capacitances-to-shield, labeled as Cs, C1
through C6,and CD,exist between the inner and outer
conductors of these eight coaxial leads. This large ca-
pacitance is unavoidable, and is determined mainly by
the sample probe length. However, the coaxial cable
length outside the sample probe to the four coaxial four-
terminal-pair measurement ports labeled Inner/Outer,
Detector, Potential, and Drive can be (and should be)
kept as short as possible.

The open-circuit capacitances can be individually
measured at room temperature access points S, 1
through 6, and D as a function of liquid helium levelby
temporarily removing the QHE device from the sample
probe at the points S', l' through 6', and D'. The capac-
itance-to-shield of each coaxial lead is about 250 pF in
typical ac QHE sample probes, but it should be reduced
to nearer 100 pF (1 X 10-10F) in a short sample probe
being designed at NIST.

A predominately 90° out-of-phase current lcs, ICi
through IC6'or ICDflows through each coaxial lead.
These currents, and all the other currents in Fig. 2, have
the correct signs for their dominant phase components
in the half-cycle of the Drive current under consider-
ation. The signs are verified in Sec. 6, where it is found
that the major components of all currents shown in the
figure have positive signs for this half-cycle.

The coaxial leads are not the only sources of capaci-
tances-to-shield. There are also additional contributions
between the QHE device-sample holder combination
and the electrical shielding surrounding them. These
additional capacitances-to-shield are labeled CAand Ca
in Fig. 2, where they are placed at either end ofthe.QHE
device. Wewill make these two capacitances as small as
possible in the NIST sample probes by: (a) mounting the
QHE devices on electrically insulated surfaces; (b) us-
ing electrically insulated sample holders; and (c) com-
pletely surrounding the QHE device-sample holder
combination with a cylindrically-shaped "pillbox"
shield located as far as possible from the QHE device
and its holder.

The additional capacitances CAand CBcan be deter-
mined by two methods. In the first method the magnetic
field is adjusted so the QHE device is on a QHE plateau.
The external Drive and Inner/Outer coaxial leads are
removed from the ac QHRS, and an applied voltage
signal is placed across the inner and outer conductors of
the Drive port. A measured voltage signal appears
across the inner and outer conductors of coaxial leads S,
D, 1, 3, and 5 for the magnetic field direction assumed

in Fig. 2, so these particular coaxial leads draw most of
the 90° out-of-phase current. Therefore the measured
total capacitance-to-shieldCr isapproximatelyCr(B)==

C) + C3 + Cs + CD+ CA,and the value of CAcan be ob-
tained by subtracting the value of C. + C3 + Cs + CD
from Cr(B). The magnetic field is reversed. Then

Cr(- B) == C2 + C4 + C6 + Cs + CB when the applied
voltage signal is placed across the inner and outer con-
ductors at the Inner/Outer port, thus yielding the value
of Ca. We expect both CA and CB will be about 1 pF or
smaller in the NIST sample probes, so both Cr(B) and
Cr( - B) need to be measured to within at least I pF.

In the second method of measuring CA and CB, the
magnetic flux density B is reduced to zero. The quan-
tum Hall voltages disappear, so the voltage generators in
Fig. 2 can be replaced in the equivalentcircuit by electri-
cal shorts. The QHE device can now be modeled as a
two-dimensional sheet resistance, and the RH(i)/2 resis-
tances located at the source and drain ends of the QHE
device are zero. Longitudinal resistances ra,rb,rc,and rd
become much larger than they were when on a QHE
plateau. Their values can be obtained by four-terminal
dc resistance measurements in a sample probe having a
pair of leads to the source and another pair of leads to
the drain. The RH(i)/2 resistances of the six QHE side
arms in Fig. 2 are replaced by much.smaller resistances
whose values can be obtained from two-terminal mea-

surements via room temperature access points S, I
through 6, and D once the appropriate lead and longitu-
dinal resistances are subtracted. An applied voltage sig-
nal placed across the inner and outer conductors of the
Driveport would cause a voltage signal to appear across
the inner and outer conductors of all the capacitances-
to-shield. Thus the total capacitance-to-shield is given
by the algebraic expression Cr = Cs + C) + C2+ C3+
C4+ Cs + C6+ CD+ CA+ CB, where CA==Ca if the
QHE device, the sample holder, and the bonding wires
between them are all symmetrically arranged. Weagain
expect both CAand Ca will be about 1 pF or smaller in
the NIST sample probes.

The equivalentcircuit of Fig. 2 also accounts for leak-
age currents between the ac QHRS's inner conductors
and the shields via resistances rKAand rKBlocated on
either side of the QHE device. Rather large voltages are
used when measuring leakage resistances, so it wouldbe
safest to temporarily replace the QHE device with
shorts when measuring the total open-circuit leakage
resistance rLkat access point S, 1 through 6, or D. If the
leakage resistances are symmetrically distributed, then
rKA==rKB==2rLk. (Their values are large compared with
the lead resistances, so they are essentially connected in

parallel within the circuit.) The NIST sample probes
will be constructed so these leakage resistances are very

large; rKAand rKBshould be at least 101411, but in the
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numerical examples of this paper we will assume a
value of 1012n due to dirty coaxial connectors.

At bridge balance the ac quantized Hall voltage
VH(i)= VH(5,6)= VPtis defined as

VPt= VH(5,6)= [1 + L1s6]RH(i)Ioh (7)

where L1S6is the correction factor to RH(i) to be deter-
mined in this analysis. Please recall from Sec. 4 that we
assume that RH(i) can be a function of temperature and
current, and can therefore differ from the ideal value
hl(e2i). Measured values of VPtvary with frequency
[4-9], but it is not clear whether this is due to a fre-
quency dependence of RH(i),of L1S6,or of both RH(i)and
L1s6.Since our calculations of the intrinsic impedance of
the 2DEG due to the internal Hall capacitance across the
QHE device [20] predict a negligible internal capaci-
tance of the 2DEG itself, we assume that RH(i) is not
frequency dependent, and that the dc values are appro-
priate for the RH(i)/2 resistances in the figure. (This
assumption does not preclude adding a frequency de-
pendence to the measured dc values of RH(i) if it is
found to be necessary.)

The symbols ra,rb,rc, and rd in Fig. 2 represent real
(in-phase) longitudinal resistances within the QHE
device. Their measured dc values can vary with temper-
ature [18] and current [19]. Sample probes normally
used in dc QHE measurements have ten leads, with a
pair of leads to the source contact pad S' and another
pair to the drain contact pad D'. Only one lead of each
pair carries the current, so all four dc longitudinal resis-
tances ra,rb,rc,and rdcan be obtained using four-termi-
nal dc measurements.

In order to reduce the heat load on the liquid helium,
sample probes for the ac QHE usually have a single
coaxial lead to each of the eight contact pads. Therefore
only rband rccan be determined directly via four-termi-
nal-pair ac measurements. For example, a four-terminal-
pair ac longitudinal resistance measurement of rccould
be made by moving the Potential coaxial port from
room temperature access point 5 to point 4 in Fig. 2, and
measuring the ac longitudinal voltage Vx(4,6)

VA 4,6) = [1 + L146]rc1oh (8)

where L146is the correction factor to rc to be determined

in this analysis. Values for ra and rd could be estimated
from their dc ralrb and rd1rc ratios if the measured rb1rc

ratio happens to be the same for both ac and dc measure-
ments using the same sample probe during the same
cool-down. We are now considering using a .pair of
coaxial leads to the source contact pad S' and another
pair of coaxial leads to the drain contact pad D' in at
least one NIST ac sample probe. That would allow ac

and dc measurements of all ra,rb,rc,and rdvalues on the
same cool-down.

Our analyses do not include this possibility of a pair
of coaxial leads to the source and another pair to the
drain. It would take much work to explicitly include
them in new calculations; however, we can account for
the presence of these two additional coaxial leads in the
analysis by including lead resistances rAand rB,and lead
inductances LA and LB in current paths CAand CBof Fig.
2, and adding two room temperature access points A
and B. (The paths would be analogous to those through
capacitors Cs, CI, C2,C3, C4, Cs, C6,and CD)'By mea-
suring the lead resistances rAand rB,and the lead induc-
tances LA and LB,the values of CAand CBin Fig. 2 could
be replaced with

CA CA

[(1 - w2CALA) + jwCArA]
(9a)

and

CB
CB

[(1 - w2C~LB) + jwCBrB] . (9b)

The capacitance-to-shield contributions between the
QHE device-sample holder combination and the elec-
trical shielding surrounding them would no longer be
accounted for, so one-tenth of these additional capaci-
tances would need to be added to each of the ten coaxial
lead capacitances Cs, CB,C1 through C6, CA,and CD.

With one exception [26], the reported ac longitudinal
resistances obtained from the real, in-phase components
of the ac longitudinal voltage measurements are signifi-
cantly larger than the dc longitudinal resistances in the
same device under the same temperature and magnetic
field conditions. The measured ac longitudinal resis-
tances increase with increasing frequency of the applied
current, and are of order 1 mn at 1592 Hz [4,5,11]. The
large ac longitudinal voltages might be due to intrinsic
frequency dependences of ra, rb, rc, and rd within the
device, to corrections such as L146ofEq. (8) via parasitic
impedances of the QHRS, or to both of them. Calcula-
tions of the kinetic inductance of the 2DEG [20] and the
magnetic inductance of the device [20] provide no plau-
sible explanations via intrinsic impedance for significant
frequency dependences of ra, rb, rc, and rd, suggesting
that the frequency dependence of the ac longitudinal
resistance is due to parasitic impedances of the ac
QHRS, and therefore arises from correction factors such
as L146.We will use numerical calculation examples in
this paper that assume either: (a) dc values for ra,rb,rc,
and rd;or (b) the worst-case scenario in which they are
frequency dependent and have 1 mn values at 1592 Hz.
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All the circuit components described so far were in-
cluded in the analyses of Ref. [16]. We now discuss the
wire-to-wire capacitances shown in Fig. 2 and labeled as
C)'2', C2'D',CS'D',etc. Primes are used in these labels
because the capacitors are located in the QHE device
and sample holder region of the circuit near S', l'
through 6', and D'. We place them there because the
outer conductors of the coaxial shields should com-

pletely surround the inner conductors elsewhere in the
circuit, and thus yield negligible contributions to the
wire-to-wire capacitances.

The circuit is complicated enough, so only those
wire-to-wire capacitors that have quantum Hall voltages
on one side of the capacitors and ground potentials on
the other side are shown in the figure because those
capacitors draw the largest out-of-phase currents. We
therefore exclude capacitances such as CST, C3,)" and
C.'D'that essentially have quantum Hall voltages on both
sides of the capacitors, and capacitances such as C4'2',
C6'4',and CS'6'that essentially have ground potentials on
both sides.

Each wire-to-wire capacitance has contributions
from: (a) metallic contact pads on the QHE device; (b)
wires connecting those contact pads to points on the
sample holder (and to any intermediate bonding pads);
and (c) metallic surfaces within the sample holder if
those surfaces are not surrounded by coaxial shields.
The wire-to-wire capacitance values depend on dis-
tances between the pairs of wires, conducting surfaces,
or bonding pads, so we will try to physically separate
them as much as possible. These capacitances will each
have different values in the algebraic solutions since
Cs's' > CST> CS')'> CS'D'and C2'D'> C4'D'> C6'O,because

of increasing physical separations, but (for simplicity)
we will assign equal values to them in the numerical
examples. These equal values will usually be assigned
0.1 pF in the calculations, exceeding the maximum val-
ues expected in NIST sample probes.

Some laboratories have tried reducing the wire-to-
wire capacitances by using evaporated metallic guard
electrodes on the device mounting surfaces to isolate the
quantum Hall voltages from the ground potentials.
These guard electrodes have very little effect since the
dielectric constant is about 13 times greater in GaAs
than in liquid helium; the electric field lines are thus
concentrated within the device and are not significantly
blocked by the surface guard electrodes.

The individual wire-to-wire capacitance values can
be obtained by (1) adjusting the magnetic flux density
B so that the allowed states of the Landau levels are
completely filled and the QHE device is operating on a
plateau; (2) removing the applied Drive current; and (3)
making two-terminal ac measurements at room temper-
ature access ports S, 1 through 6, and D. The Hall

capacitances across the device C.'2', C3'4',and CS'6'have
the contributions (a), (b), and (c) mentioned two para-
graphs above, but they also have contributions from the
intrinsic capacitance of the 2DEG. We predicted that
this internal Hall capacitance was negligible [20], but its
actual contribution can be measured by observing any
increase in C)'2', C3'4',or CS'6'values when the Drive
current [Dris turned on.

The capacitances, inductances, lead resistances, con-
tact resistances, and leakage resistances of Fig. 2 con-
tribute parasitic impedances to measurements of the ac
QHRS. They are drawn as discrete circuit elements. In
reality they are distributed within the standard, and
could, in principle, be better represented. For example,
we could replace capacitance-to-shield C. with a capac-
itor of value C)/2, then place a second capacitor of value
C)/2 and a series-connected outer shield impedance z{
between the other side of circuit element z) at point l'
and the first C./2 capacitor. This distributed series-par-
allel impedance would, however, greatly complicate the
circuit analyses, with an insignificant gain in accuracy.
(Our discrete-elements circuit slightly over-emphasizes
the capacitance-to-shield currents if z. ~ z{ and gives
the same capacitance-to-shield currents if z. = zt.)

This completes the description of the equivalent cir-
cuit. The next section analyzes the circuit. .

6. Analysis of the Single-Series "Offset"
Circuit

We refer to the circuit in Fig. 2 as single-series
"offset": single-series because there is just one current
lead connected to the source contact pad S', andjust one
current lead connected to the drain pad D' of the QHE
device; and "offset" because the Hall voltage leads are
connected to arms 5 and 6 of the device, rather than to
the central arms 3 and 4. Arms 5 and 6 are those closest
to the source contact pad S', which is at a potential near
that of the circuit ground. Arms 5 and 6 are also nearest
to the ac reference resistor (not shown in the figure).

This single-series "offset" circuit is considered here
because only it, and the quadruple-series circuit investi-
gated in Sec. 7, provided the desired accuracy in earlier
stages of the analysis [13,16] with all sample probe
leads attached. Other circuit connection possibilities had
been eliminated in Refs. [13] and [16] due to undesir-
able parasitic impedance effects.

6.1 Exact Single-Series "Offset" Equations

We use Kirchoffs rules to sum the voltages around
loops and the currents at branch points to obtain exact
algebraic equations for the equivalent electrical circuit
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shown in Fig. 2. Four of the current solutions are trivial
because of the four-terminal-pair definition [23,24]
listed in Sec. 5

lDt = lPt = IC6= 17.(,= O. (10)

Those four currents are not included in the 35 inner
conductor currents shown in the figure since they are
assumed to be zero in the ideal four-terminal-pair defi-
nition. (They can be adjusted to be zero within several
parts in 109 of lOt in NIST bridges.) The remaining
circuit has 21 independent voltage loop equations and 13
independent current branch points. This gives a set of 34
coupled equations for the 35 non-zero currents. Our goal
is to simultaneously solve this set of 34 coupled equa-
tions, and to then express all the currents, and the quan-
tum Hall voltage, in terms of lOt because that is the
current which enters the ac reference standard (not
shown in Fig. 2).

Finding the exact algebraic equations for all the cur-
rents, and for the correctionfactor L1s6to the quantum
Hall voltage as defined by Eq. (7), is difficult because
of the many coupled equations. However,it is important
to obtain the exact solutions, rather than initially guess
approximate solutions, because the frequency-depen-
dent effects we are trying to minimize or eliminate are
small, but significant.

The algebraic derivations were done "by hand", rather
than with computer software programs. Doing it "by
hand" allowed us to investigate each stage of the solu-
tion, and to get a physical sense of the equations. Com-
puter software programs generated pages of equations,
with no simplification and no physical insight. Com-
puter programs were, however, used to calculate numer-
ical examples.

The following procedures were used to find the exact
solutions: (a) two of the authors independently derived
the equations. They made the same choices of current
branch points, but different choices of paths for the
independent voltage loops and the substitutions of alge-
braic variables. A current branch point example is

lcs = lOt - Is. . (11)

A voltage loop example around the path Cs, S', CB,and
back through the shield to Cs is

I I-
J'w C lcs + zsls + :-- c ICB= 0 (12a)

s JW B

l CB
l

.
CB= Cs Cs- JwCBzsls (12b)

1cB= Adcs - A21s. (12c)

Liberal use was made of algebraic substitutions such as
AI andA2ofEq. (12c). This added to the "bookkeeping"
problems, but reduced the possibilities for algebraic er-
rors as the equations were uncoupled.

The 34 branch and loop equations contained 35 cou-
pled currents. The two authors used different strategies
to "decouple" these 34 initial equations and thereby
derive the results; (b) they then independently used
Mathcad PLUS 6 (Professional Edition for Macintosh
computers)1software to enter their own algebraic substi-
tutions and their own current equations, and then com-
pared numerical results with the other author. The nu-
merical results for the currents were in exact agreement
to within at least six significant figures when using the
highest allowed precision of the Mathcad software when
the values were expressed in the scientific notation
1.23456 X 10-YZ;(c) the third author took the two initial
sets of 34 coupled current equations derived by the other
two authors, entered the equations in matrix form into
the Mathcad software, and for particular numerical ex-
amples, inverted the matrices to solve for the currents.
This method for solving the coupled equations is faster,
but less reliable, than solving the equations "by hand",
since round-off errors can go undetected. HQwever,most
results agreed with the numerical results of the other
two authors to within four to six significant figures. The
largest difference from the exact solutions discussed
below was only a 1 part in 1011discrepancy in the
out-of-phase (imaginary) term of ICB;and finally (d) the
exact algebraic solutions discussed below were then
checked at least twice by all three authors, so we are
reasonably confident of the equations.

In the exact solutions discussed here, all 35 coupled
currents in the 34 initial equations were expressed in
terms of the "core" currents lOb1cs,Is, ICB'ld, Ie, lb, la,
ICA'and 1D.These "core" currents were then successively
substituted into the remaining equations to obtain the
equation

Is = kglot, (13)

which looks "simple", except that the substitution vari-
able kgis a function of 203 other algebraic substitutions.
The remaining currents were easily obtained once Eq.
(13) was solved. As mentioned above, the numerical
results agree with the results of the other exact solution
to within six significant figures, and also agree very well
with the matrix inversion.

I Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not

imply recommendation or endorsement by the National Institute of

Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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In addition, the exact solution results agree with the
numerical results listed in Eqs. (20) and (21) of Ref.
[16] to within at least six significant figures. The calcu-
lations of Ref. [16] did not include wire-to-wire capaci-
tances. (Some of the algebraic substitutions of the
present work approach infinity as the wire-to-wire ca-
pacitances approach zero, so a limiting value of 10-60F
was assigned to each wire-to-wire capacitance to avoid
this problem. The 10-60F value was chosen because
there were no differences in the numerical results when

the wire-to-wire capacitances were within the range
10-40F to 10-80F.)

The exact equations for the currents and the quantum
Hall voltage were published in our earlier analyses
[13,16]. That is not feasible here because: (a) the
chances for error are too numerous; and (b) there are so
many algebraic substitutions that the final answers con-
vey no physical insight. Instead, we: (1) present numer-
ical examples of the currents and quantum Hall voltage
in Sec. 6.2; (2) list the approximate equations for the
currents and quantum Hall voltage in Sec. 6.3; and (3)
can supply the reader with a 30 page computer printout
which lists the 204 algebraic substitutions, the exact
current and quantum Hall voltage equations, the approx-
imate equations, and numerical calculations for a partic-
ular set circuit component values of the reader's choice.

6.2 Numerical Examples

We give here numerical examples of how the parasitic
impedances within the ac QHRS affect the currents and
the measured values of VH(5,6).Cardinal numbers are
usually assigned to the circuit element components of
Fig. 2 in the examples to emphasize that the results
presented below are not intended as calculations for a
particular sample probe. We will measure the actual
values of all the parasitic impedance components of our
sample probes as a function of liquid helium level.

Both the i = 2 (12 906.4 0) and i = 4 (6 453.2 0)
plateaus can be measured in ac experiments, so let
RH= 10 000 0. The cardinal values we usually use in
the examples are

RH = 1040 (14a)

rS= rl = rz = r3= r4= rs = r6= rD= 1 0 (14b)

ra = rb = re = rd = 10-3 0 (14c)

rKA= rKB= 10lz 0 (14d)

Cs = CI = Cz = C3 = C4 = Cs = C6 = CD= 10-10 F (14e)

CA= Co = 10-12 F (l4f)

CI'2' = C3'4'= CS'6' = CS'D'= CS'I' = CST = Cs's' = CZ'D'

= C4'D' = C6'D' = 10-13 F (14g)

Ls=LI =Lz=L3=L4=Ls=L6=LD= 10-6 H (14h)

w = 104rad/s. (14i)

Note that the 100 pF capacitances-to-shield values of
Eq. (14e) may be close to those that will be obtained
in the short NIST sample probe, but typical ac probes
have values around 250 pF. Note also that Cs's'>
CST> CS'I' > CS'D' and CZ'D'> C4'D' > C6'D' in real sample

probes because of increasing physical separations be-
tween corresponding pairs of inner conducting surfaces.

Using these cardinal numbers, and grouping similar
types of currents, the numerical results for the currents
shown in Fig. 2 are
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Is = {[1.00000] - j[1.0 X 10-6]} lOt (15a)

Id= {[1.00000] - j[4.1 X 10-S]} lOt (15b)

Ie = {[1.00000] + j[0.00996]} lOt (15c)

Ib = {[0.99990] + j[0.01996]}IOt (15d)

Ia = {[0.99970] + j[0.02996]}IOt (15e)

ID= {[0.99970] + j[0.03010]}IOt (15f)

IDr = {[0.99940] + j[0.04010]}IOt (15g)

IKB= {-[2.0 X 10-15]+ j[2.0 X 10-13]}lOt (15h)

IKA= {[1.0 X 10-8] + j[3.0 X 10-IO]}lOt (15i)

ICB= {-[2.0 X 10-9] - j[2.0 X 10-1I]}lOt (15j)

ICA= {- [3.0 X 10-6] + j[1.0 X 10-4]}lOt (15k)

Ics = {-[2.1 X 10-7] + j[1.0 X 10-6]} lOt (151)

Ic4= {-[2.0 X 10-7] - j[1.0 X 10-9]} lOt (15m)

Icz = {-[4.0 X 10-7] - j[1.0 X 10-9]} lOt (15n)

Ics = {[6.2 X 10-7] + j[0.01000]} lOt (150 )

Ic) = {-[1.0 X 10-4] + j[0.01000]}IOt (15p)

fe. = {-[2.0 X 10-4] + j[0.01000]} lOt (15q)

ICD = {-[3.0 X 10-4] + j[O.01000]} lOt (l5r)
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The 900out-of-phase (imaginary or j) components of
shunt currents Ics, Ic), Icl' lCD'and ICAare much larger
than for shunt currents Ic2,Ic4,Ics, and ICBbecause con-
tact pads 5', 3', 1', and D' are all near the quantum Hall
potential, rather than near the shield potential. A 1%
out-of-phase current passes through each of the coaxial
cable capacitances Cs, C3, C\, and CDin this example,
which is not necessarily a problem if there is enough
adjustment in the bridge Drive to provide this extra 4 %
of out-of-phase current to IDr.

The exact equation for the quantum Hall voltage is
obtained by summing the voltages between the inner
conductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through arm 6, voltage
generators VS6and Vss, and arm 5 we find that

VH(5,6) = RH/d - RH/6, - ZSIC5' (17a)

which can also be expressed in the form

VH(5,6) = [1 + L1s6]RH/ot. (1 7b)

The numerical results are

VH(5,6)= {I + [1.1 X 10-6] - j[6.2 X 10-S]}RH/ot
(18a)

L1S6= {[1.l X 10-6] - j[6.2 X 10-S]} (18b)

for 100 pF lead capacitances and

L1S6= {[2.8 X 10-6] - j[6.5 X 10-S]} (19)

for 250 pF coaxial leads.
The 1.1 X 10-6 in-phase L1S6correction to RHfor 100

pF leads is nearly two orders of magnitude larger than
the 2.0 X 10-8 in-phase correction predicted in Ref.
[16], which neglected the wire-to-wire capacitance ef-
fects. When the wire-to-wire capacitances are all re-
duced to 1 X 10-14F, the in-phase and out-of-phase
corrections are

L1S6= {[1.3 X 10-7] - j[8.0 X 10-6]} (20a)

and

L1S6= {[3.3X 10-7] - j[l.1 X 10-S]} (20b)

for 100 pF and 250 pF coaxial leads, respectively.
The in-phase corrections to L1S6in these examples are

far greater than our desired 1 X 10-8 RHabsolute one-
standard-deviation accuracy, making the single-series
"offset" circuit useless for ac quantum Hall voltage mea-
surements. However, we will see in Sec. 6.4 that this
circuit can be used for ac longitudinal voltage measure-
ments. We next give the approximate solutions for the
currents and the quantum Hall voltage to show the
source of this in-phase problem.

6.3 Approximate Single-Series "Offset" Solutions

The terms in the following approximate solutions
were obtained in a tedious, weeks-long process by
changing the individual values of circuit element com-
ponents by an order of magnitude in the computer pro-
gram; observing the calculated results; and then finding,
by "educated guesses" and "trial-and-error", algebraic
expressions that duplicate these results. The approxi-
mate solutions yield results that agree to within at least
two significant figures for both the real and imaginary
parts of the exact numerical results listed in Eqs. (15) to
(16) and Eqs. (18) to (20).

All the terms in the approximate equations were
found to be necessary for the particular sets of circuit
components values tried so far, but other terms may

541

16' = {- [3.0 x 10-7] + j[2.0 x 10-5]} lOt (15s)

14'={-[2.0 X 10-7] + j[2.0 x 10-S]} lOt (15t)

12,= {-[1.0 X 10-7] + j[2.0 x 10-S]} lOt (15u)

Is' = {[6.2 x 10-7] + j[0.01002]} lOt (15v)

13,= {- [1.0 X 10-4] + j[0.01002]} lOt (15w)

11,= {-[2.0 X 10-4] + j[0.01002]} lOt (15x)

IC6'D' = {-[3.0 X 10-7] + j[1.0 x 10-S]} lOt (l5y)

Ic4.D.= {- [3.0 X 10-7] + j[1.0 x 10-S]} lOt (15z)

IC2'D' = {- [3.0 X 10-7] + j[1.0 x 10-S]}lOt (16a)

Ics.s' = {[4.1 x 10-10] + j[1.0 x 10-S]} lOt (16b)

IcS')'= {-[1.0 X 10-7] + j[1.0 x 10-S]} lOt (16c)

ICs'l' = {- [2.0X 10-7] + j[1.0 x 10-S]}lOt (16d)

ICs'D' = {- [3.0 X 10-7] + j[1.0 x 10-S]} lOt ( 16e)

ICs'6'={[6.1 X 10-10] + j[1.0 x 10-S]}/Ot ( 16f)

Ic3'4'= {-[1.0 X 10-7] + j[1.0 x 10-S]} lOt (16g)

Ic,.2.= {-[2.0 X 10-7] + j[1.0 x 10-S]}/Ot. (16h)
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very well need to be added to these approximate equa-
tions if the circuit components have values significantly
different from the cardinal numbers listed in Eq. (14).
The reader should again be cautioned that it is the exact
equations that are the most reliable, not the approximate
equations. However, the approximate solutions provide
physical insight into the sources of error in quantum
Hall voltage measurements.

Let

Cx'x' = Cs'o' + CST + CST + CS'5' + C2,o' + C4,o' + C6,o'

+ CJ'2' + C3'4'+ CS'6" (21)

Then

Ics =:Ics. = {[w2CsCsrsrs - w2CsLs

- W2CS(C6,o' + CS'6,)RHRH]

.[ (CI + C3 + Cs) ]}+J wCs(rs + rd) - wC6,o' Cs rs lOt (22a)

Is =:Is. = {1 - j[wCsCrs + rd)]}/ot (22b)

ICa=:ICa = ([W2CBCSrSrd- W2CB(C6,O'+ CS'6,)RHRH].
+j[WCBrd - W3CB(C1 + C3 + Cs)C6'o,RHRHRH]}/Ot

(22c)

{[
rd 2 RH

]IKa=:IKa.= - - w (C1+ C3+ Cs)C6'o,RHRH-
rKa rKa

.[ rd RH

]}-J wCsrs - - w(C6'O'+ CS'6,)RH- lOt
rKa rKa

(22d)

Id =:Id. = lOt - Ics. - ICa.

- {j[w(Cs'o' + CS'J'+ CST + Cs,S')RH]}/Ot (22e)

Ics's' =: Ics.s'. = {[w2CS'S'(Cs'o' + CS'J' + CST + CS's,)RHRH]

+[w2CsCs's,RHrS] + j[wCS'5'RH]}/Ot (22f)

16, =:16'. = {- [w2( CJ + C3 + Cs)C6'o,RHRH]

+ [W2CS'6'(CS'O' + CST + Cs')' + CS'5' + C6'O' + CS'6,)RHRH]

+j[w(C6,O' + CS'6,)RH]}/Ot (22g)

Ics =:Ics = ([w2CsCsRHrS + w2CsCsRHrS].
+[w2CS(CS'O' + CS'J' + CST + Cs's' + C6'O' + CS'6,)RHRH]

+j[wCsRH]}/Ot (22h)

ICs'6' =: ICS'6'a =

{[W2CS'6'(CS'O' + CST + CST + Cs's' + C6'O' + CS'6,)RHRH]

+[w2CsCS'6,RHrS] + j[wCs'6,RH]}/Ot (22i)

Is' =:Is'. = Ics. + IcsT. + ICs'6'. (22j)

Ie =:Ie. = Id. + Is'. - 16'. (22k)

IC6'D' =: IC6'D'. = 16'. - ICs'6'. (221)

IC4=: IC4. = {[ W2C4C4(RH + r4)re - W2C4CsRHre]

+ [W2CSC4rSre- W2C4(C4,O'+ C3'4,)RHRH]

+j[wC4re - W3CS(CJ + C3)C4'o,RHRHRH]}/Ot (22m)

14,=:14'.= - Ic4. + {-[w2(CJ + C3+ Cs)C4'oRHRH

+ W2CSC3'4RHRH]+ [W2C3'4.{CX'X'- Cs's' - CS'6,)RHRH]

+j[w(C4,O' + C3'4,)RH]}/Ot (22n)

IC3=: Ic3. = { - [W2C3CsRHRH]

+ [W2C3(CS'o' + CST + CS'3' + C6'o,)RHRH]

+ j[wC3RH]}/Ot (220 )

ICST =: ICs'3' a = {- [w2CsCs'),RHRH]

+ [W2CS'3'(CS'O'+ CS'J'+ CsT)RHRH]

+ j[wCsTRH]}/Ot (22p)

IC3'4' =: IC3'4'. = { - [W2CSC3'4,RHRH]

+[W2C3'4'(CS'O'+ CS'J' + CST + C6'O' + C4'O' + C3'4,)RHRH]

+ j[WC3.4RH]}/Ot (22q)

(22r)

(22s)

13, =: 13'. = Ic3. + ICS'3'. + IC3'4'.

Ib =: lb. = lOt + ICs. + Ic3.

IC2= Ic2. = {-[W2C2(C4,O' + C2'O' + CJ'2' + C3'4,)RHRH]

- [W2C2C3RHrb- W2C2C4RHre- W2C2CSTRHre]

+ [W2C2(C2 - CS)RH(rb + re) + w2C3C4r2re]

+ [W2CSC2rS(rb + re)] + j[WC2(rb + re)]

- j[W3C2CS(C4'O, + C2'O' + C1'2' + C3'4,)RHRHRH]

+ j[W3C2(C2 + C4)C3'4,RHRHRH]

- j[W3C2C3C2'ORHRHRH]}IOt (22t)
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12,= 12'a= - IC2a+ {-[W2(C) + C3 + Cs)C2'DRHRH]

- [W2(C3 + CS)C) '2,RHRH]

+ j[W(C2'D'+ C1'2,)RH]}/Ot (22u)

ICI = ICI = {-[W2C1(C3 + CS)RHRH]+ j[wC1RH]}IOt .

a (22v)

ICs'I,=lcS'I'a = {-[W2CS,).(C3 + CS)RHRH] + j[wCS,),RH]}/Ot
(22w)

ICI'2,=/cl'2' = {-[W2C)'2,(C3 + CS)RHRH] + j[wC) '2RH]} lOt

a (22x)

1),=/)'a=/cla + IcS'l' a +/CI'2'a (22y)

la = laa= lOt + ICsa+ IC3a+ ICla (22z)

IC4'D'= IC4'D' = {- [W2C4'D'( C) + C3 + CS)RHRH]a

+ j[WC4'D,RH]}/Ot (23a)

IC2'D'=IC2.D, = {-[W2C2'D'(C) + C3 + CS)RHRH]a

+ j[WC2'DRH]}/Ot (23b)

ICS'D' =ICS'D' = {- [W2CS'D'( C) + C3 + CS)RHRH]a

+ j[wCs'D,RH]}/ol (23c)

lKA = lKA, ; U:j+ j [W( C,+ C,+ C,)RH ~:]} lOt (23d)

ICA =ICA = {-[W2CA(C) + C3 + CS)RHRH]a

+j[wCARH]}/Ot (23e)

ID=IDa= 101+ Icsa + IC3a + ICla + ICAa (23f)

ICD= ICD = {- [W2CD( C1 + C3 + CS)RHRH]a

+j[wCDRH]}/Ot (23g)

IDr = IDra = 101 + Icsa + IC3a + ICla + ICAa + ICDa' (23h)

Expressing Eq. (17a) in the form (17b),

L1s6 = L1S6a =

{- [w2CsCsRHrc + w2CsCsrsrs + w2CsCsrsrs]

- [w2CsCsrsrs - w2CsLs - W2CsLs]

+ [W2Cs(C6'D' + Cs.6,)RHRH]

+ [w2C)(CS'D'+ C6'D.)RHRH]

+ [W2C3( CS'D'+ CS'I' + C6'D')RHRH]

+ [w2CS(CS'D' + CST + CST + C6'D,)RHRH]

- j[w.Csrs+ wCsrs + wCs(rc + rd)]

- j[w(CS'D'+ CS'I'+ CST + CS'5'+ C6'D'+ CS'6,)RH]}. (24)

It would have been very difficult to predict some of
these approximate current and voltage solutions without
first knowing the exact results. We see from Eq. (24)
that the main source of the intolerably large in-phase
corrections to the quantum Hall voltage signal arises
from terms involving the products of capacitances-to-
shield times wire-to-wire capacitances.

Although it is disappointing that single-series "offset"
connections cannot be used to make ac quantum Hall
voltage measurements, we see in the next subsection that
the circuit analysis remains applicable for ac longitudi-
nal voltage measurements, and that this circuit can be
used for ac longitudinal voltage measurements.

6.4 AC Longitudinal Voltage Measurements

The Potential port shown in Fig. 3 has been moved
from room temperature access point 5 in Fig. 2 to room
temperature access point 2. Now the ac longitudinal
voltage VA2,6) is measured, rather than the ac quantum
Hall voltage VH(5,6).Also, the ac longitudinal voltage
Vx(4,6)can be measured by simply moving the Potential
port from access point 2 in Fig. 3 to point 4.

Notice that the four-terminal-pair definitions given in
Sec. 5 still apply since Ipt= 0 and IDt= 0 for both the
VA2,6)and Vx(4,6) measurements. The equivalent cir-
cuit element currents in Fig. 3 are identical to those
shown in Fig. 2. Therefore, the exact currents derived in
Sec. 6.1; the numerical values listed in Sec. 6.2; and the
approximate currents given by Eqs. (22) and (23) in Sec.
6.3 remain unchanged.

The exact equation for the ac longitudinal voltage
Vx(4,6) is obtained by summing the voltages between
the inner conductors of the Detector coaxial port and the
Potential coaxial port. Taking the path through arm 6,
voltage generators V6cand Vc4,and arm 4 we find that

Vx(4,6) = rc/c + RH/4, - z4/c4, (25a)

which can also be expressed in the form

Vx(4,6) = [1 + L146]rc/01' (25b)
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Fig. 3. An equivalent electrical circuit representation of an ac QHE resistance standard while being measured for the longitudinal voltage VA2,6)
using four-tenninal-pair techniques. See Sec. 6.4 for the circuit analysis.

Equation (25b) can be rewritten as
846=;: L146.

(25e)

VA;(4,6)- relOt= L146relOt= 846RHIOt. (25c)
Likewise,

Thus

Vx(2,6) = rele + rblb + RHl4,+ RHh, - Z2lcz, (26a)
A _[VA4,6) - relOt]

"-146- ,
relOt

(25d)
which can be expressed in the form

and Vx(2,6) = [1 + L126](re+ rb)IOt. (26b)

544



Volume 104, Number 6, November-December 1999

Journal of Research of the National Institute of Standards and Technology

Equation (26b) can be rewritten as

VA2,6) - (re + rb)Iot = L126(re+ rb)IOt= ~6RHlot. (26c)

Thus

A _ [Vx(2,6) - (re + rb)Iot]
"-126-

(re + rb)Iot '
(26d)

and

~ _~+~A
~6- RH "-1u,

(26e)

The numerical results ofEq. (25), when using the cardi-
nal values listed in Eq. (14), are

Vx(4,6)= {I - [1.99160] + j[199.990]}rJot (27a)

.146= {-[1.99160] + j[199.990]} (27b)

846= {- [2.0 X 10-7] + j[2.0 X 10-5]} (27c)

for 100 pF lead capacitances and

.146= {-[4.99103] + j[199.938]} (28a)

846 = {-[5.0 X 10-7] + j[2.0 X 10-5]} (28b)

for 250 pF coaxial leads.
The numerical results of Eq. (26), when using the

cardinal values listed in Eq. (14), are

Vx(2,6)= {I - [1.49070] + j[199.990]}(re + rb)Iot(29a)

.126= {-[1.49070] + j[199.990]} (29b)

826= {-[3.0 X 10-7] + j[4.0 X 10-5]} (29c)

for 100 pF lead capacitances and

.126= {-[3.74112] + j[199.938]} (30a)

~6 = {-[7.5 X 10-7] + j[4.0 X 10-5]} (30b)

for 250 pF coaxial leads.
We see from Eqs. (27b) and (28a) that the measured

ac values of Vx(4,6)have in-phase errors of - 2reIOtfor
100 pF leads and - 5reIOtfor 250 pF leads. These errors
are due to the parasitic impedances. The corresponding
errors for Vx(2,6) measurements are - 1.49(re+ rb)Iot
and - 3.74(re+ rb)Iotin Eqs. (29b) and (30a), respec-
tively. The - 5re in-phase error in measuring the ac

value of re for 250 pF leads is too large to apply a
reasonable correction. This error is reduced to a more
tolerable - 2re in-phase error with shorter, 100 pF, sam-
ple probes. Furthermore, the error signal in Eq. (27b) is
reduced by a factor of ten to .146= {- [0.19988] +
j[19.9990]} when the wire-to-wire capacitances are
lowered from our assumed 10-13F values to 10-14F
values. It is thus very important to reduce the capaci-
tances-to-shield and the wire-to-wire capacitances as
much as possible when making ac longitudinal voltage
measurements.

The numerical examples in Eqs. (27) through (30)
haveassumed 1mn ac longitudinal resistance values for
ra,rb, re,and rd. Equations (27b) and (27c) become

.146= {- [0.20000] + j[20.0000]} (31a)

046= {-[2.0 X 10-7] + j[2.0 X 10-5]} (31b)

for 100 pF leads and 10 mn longitudinal ac resistances
and

.146= {-[20.0000] + j[2000.00]} (32a)

046= {-[2.0 X 10-7] + j[2.0 X 10-5]} (32b)

for 100 pF leads and 0.1 mn longitudinal resistances.
Equations (27b), (3Ia), and (32a) demonstrate that the
contributions from the parasitic impedances to the in-
phase components of the ac longitudinal resistance er-
rors, L146re,remain unchanged when the values of ra,rb,
re,and rdvary. Equations (27c), (3Ib), and (32b) demon-
strate that the ac longitudinal resistance errors, 046,
(which are expressed as fractions of the quantized Hall
resistance RH)are independent of the values of ra,rb,re,
and rd.

There are very large out-of-phase errors for all the
examples given by Eqs. (27) through (32). We will see
from the approximate equations listed below in Eqs. (33)
and (34) that these out-of-phase errors, as well as the
in-phase errors, arise from the parasitic impedances.

The out-of-phase component of the ac longitudinal
voltage signal, such as the {j[I99.990]}reIOtterm ofEq.
(27a), is nulled with bridge balances. That is normally
not a problem because impedance standards usually
have small capacitive components if they are ac resis-
tors, or small resistances if they are capacitors. However,
ac quantized Hall resistance standards have large out-of-
phase components of the ac longitudinal voltage signal
due to the parasitic impedances. For example, the out-
of-phase signal term is {j[2.0 X 10-5]}RH1otin Eq.
(27c) when expressed as a fraction of RH.Balances in
NIST high precision ac bridges are capable of providing
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out-of-phase adjustment signals as large as 5 X 10-4
RH10bso the bridges can easily null this out-of-phase
signal, but the following error can occur. The compo-
nents .used in the bridge balances to null the out-of-
phase component of the ac longitudinal voltage signal
have resistive, in-phase (phase defect) contributions, so
when we inject an out-of phase signal to null the out-of-
phase ac longitudinal voltage signal we inadvertently
also inject a small, real, in-phase component. The in-
phase (phase defect) balance signal is unintentionally
added to the real in-phase component of the ac longitu-
dinal voltage signal. Therefore, the bridge must be care-
fully calibrated so that we know precisely how much
in-phase signal has been inadvertently injected, and can
apply corrections for this injected signal.

An uncorrected phase defect error in the measured
longitudinal voltage has a linear frequency dependence
in NIST four-terminal-pair bridges. This error may be a
possible source of the linear frequency dependences of
the ac longitudinal voltages reported by other laborato-
nes.

The ac longitudinal voltage can also be measured by
not nulling the in-phase and the large out-of-phase
voltage signals at the lock-in detector, and instead cali-
brating the detector linearity and then using the direct
(unbalanced) in-phase and out-of-phase detector read-
ings. The lock-in detector would require separate sensi-
tivity ranges for the in-phase and the out-of-phase com-
ponents of the voltage signal since these components
differ by two orders of magnitude in our numerical
examples. This direct reading method would be a useful
check of the ac longitudinal voltage measurements
made by balancing the bridge and nulling the lock-in
detector.

These difficult problems of measuring the ac longitu-
dinal voltages and then correcting for parasitic
impedance contributions and bridge balance effects or
lock-in detector nonlinearities disappear if it can ulti-
mately be experimentally shown that there are no intrin-
sic frequency dependences of the QHE devices them-
selves. Then dc values of ra,rb,re,and rdcan be assigned
to Fig. 3, and to the exact current and longitudinal
voltage equations, by using dc measurements under the
same sample temperature conditions as in the ac mea-
surements, and during the same cool-down.

The terms in the following approximate corrections to
the ac longitudinal voltage were again obtained by
changing the individual values of circuit element com-
ponents by an order of magnitude in the computer soft-
ware; observing the calculated results; and then finding,
by "educated guesses" and "trial-and-error", algebraic
expressions that duplicate these results. The approxi-
mate corrections yield results that agree to within at
least two significant figures for both the real and imag-

inary parts of the exact numerical results listed in Eqs.
(27) to (32). All the terms in the approximate correc-
tions were found to be necessary for the particular sets
of circuit components values tried so far, but other terms
may need to be added to these approximate corrections
if the circuit components have values significantly dif-
ferent from the cardinal numbers listed in Eq. (14). The
reader should again be cautioned that it is the exact
equations given by Eqs. (25) and (26) that are the most
reliable, not the approximate equations. However, the
approximate equations provide physical insight into the
sources of error in ac longitudinal voltage measure-
ments.

The approximate corrections to the ac longitudinal
voltage are expressed as fractions of the quantized Hall
resistance RH.They can also be expressed in terms of the
longitudinal resistances re or (re+ rb) by multiplying
each term in Eq. (33) by the quantity RH/re,and each
term in Eq. (34) by the quantity RH/(re+ rb)' The ap-
proximate corrections to the ac longitudinal voltagesare

546 ::::: 546 = {- [W2C4C4(RH + r4)re - W2C4CsRHre]

- [W2CS(C4- Cs)rsre - w2C4CSr4re- w~CsCsrsre]

[ 2 (RH + r2) 2c (rs ) ]- W C4C4 ~ r4re + w sCs RH rsre

- [ w2CSC4(;:)r4re - w2CsLs(;:) ]

- [w2( C1 + C3)C4'O.RHRH]

.[ (rs + rd) (r4 ) ]- J w(C4 - Cs)re+ wCs ~ re + wC4 RH re

+ j[W(C4'D'+ C3'4,)RH]} (33)

and

~6 :::::~6a = {- [W2C4C4(RH+ r4)re - W2C4CsRHre]

- [w2C2C4RHrc- W2C3(C2 - CS)RHrb]

- [W2C2(C2- CS)RH(re+ rb) + w2C3C4r2rc]

- [W2CSC4rsrc - w2CsCsrs(re+ rb)]

+ [w2CsCsrs(re + rb) - W2CSC2rs(re+ rb)]

[ 2 (rs ) (
2 (rC+rb

)]- w CsCs RH rs re+ rb) - w CsLs ~

- [W2C1(C2'D' + C4'D,)RHRH]
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+ [W2C2(C2'D' + C4'D' + C1'2' + C3'4,)RHRH]

- [W2C3(C2'D'+ C4'O' + C1'2,)RHRH]

+ [W2C4(C4,O' + C3'4,)RHRH]

- [W2CS(C2'D' + C4,o' + C1'2' + C3'4,)RHRH]

- j[wC2(rc + rb) - WC3rb+ wC4rc - wCs(rc + rb)]

- j [WCs(~:)(rc + rb) + WCs(~:)(rc + rb)]

- j [ WC2(~:)(rc + rb)]

+ j[W(C2'D'+ C4'O'+ C1'2'+ C3'4,)RH]}. (34)

We see from Eqs. (33) and (34) that the main sources of
the in-phase corrections to the ac longitudinal voltage
signal arise from terms involvingthe products of capac-
itances-to-shield times wire-to-wire capacitances. The
main sources of the large out-of-phase corrections to the
ac longitudinal voltage signal arise from terms involving
the wire-to-wire capacitances.

7. Analysis of the Quadruple-Series
Circuit

Figure 4 shows an equivalent electrical circuit repre-
sentation of an ac QHRS using two quadruple-series
connections to the QHE device. There are two quadru-
ple-series connections because one set of four short
coaxial leads, located outside the sample probe, connect
room temperature access points 5, 3, 1, and D at point
Y, providing four current paths to the device. Another set
of four short coaxial leads connect access points 2, 4, 6,
and S at point Z. Short coaxial leads, also located out-
side the sample probe, connect point Y with the Drive
and Potential ports, and point Z with the Inner/Outer and
Detector ports.

This quadruple-series circuit is considered here be-
cause it provided the desired accuracy in earlier stages
of the analysis [13,16] with all sample probe leads at-
tached. All other circuit connection possibilities (except
the single-series "offset" circuit examined in Sec. 6) had
been eliminated in Refs. [13] and [16] due to undesir-
able parasitic impedance effects.

7.1 Exact Quadruple-Series Equations

We again use Kirchoffs rules to sum the voltages
around loops and the currents at branch points to obtain

exact algebraic equations for the equivalent electrical
circuit shown in Fig. 4. Eight of the current solutions are
trivial because of the four-terminal-pair definition
[23,24] listed in Sec. 5

lOt= IPt= lcs = lCDt= lC2= lC4= lC6= lrrx= O. (35)

Those eight currents are not included in the 46 inner
conductor currents shown in the figure since they are
zero in the ideal four-terminal-pair definition. (They can
be adjusted to be zero within several parts in 109of lOt
in NIST bridges.) The remaining circuit has 27 indepen-
dent voltage loop equations and 18 independent current
branch points. This gives a set of 45 coupled equations
for the 46 non-zero currents. Our goal, once again, is to
simultaneously solve this set of 45 coupled equations,
and to then express all the currents, and the quantum
Hall voltage, in terms of lOtbecause that is the current
which enters the ac reference standard (not shown in
Fig. 4).

At bridge balance, the measured ac quantized Hall
voltage for this circuit is defined as

VPt = VH(Y,Z) - rptlCp,' (36)

The voltage VH(Y,Z)between room temperature access
points Y and Z can be expressed as

VH(Y,Z) = [1 + .1yz]RH(i)lot, (37)

where .1YZis the correction factor to the intrinsic quan-
tized Hall resistance of the QHE device, RH(i). This
correction factor .1YZis to be determined in the analysis.

We again assume that RH(i) is a function of tempera-
ture and current, and it can therefore differ from the
ideal value h/(e2i). Measured values of VPtalso vary
with frequency [4-9]. Weassume: (a) that this frequency
dependence arises from the parasitic impedance effects
of the ac quantized Hall resistance standard, as repre-
sented by the correction factor .1yz;(b) that the intrinsic
quantized Hall resistance RH(i) is not frequency depen-
dent; and (c) that the de values are appropriate for the
RH(i)/2 resistances in Fig. 4. (The last assumption does
not preclude adding a frequency dependence to the mea-
sured de values of RH(i) if the predicted value of
VH(Y,Z)does not agree with the measured value.)

Finding the exact algebraic equations for all the cur-
rents, and for the correction factor .1YZto the quantum
Hall voltage as defined by Eq. (37), is difficult because
of the many coupled equations. However, it is important
to obtain the exact solutions, rather than initially guess
approximate solutions, because the frequency dependent
effects we are trying to minimize or eliminate are small,
but significant.
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The algebraic derivations were again done "by hand",
rather than with computer software programs, because
doing it "by hand" allowed us to investigate each stage
of the solution, and to get a physical sense of the equa-
tions. Computer software programs generated pages of
equations, with no simplification and no physical in-
sight. Computer programs were, however, again used to
calculate numerical examples. We used the procedures
described in the next two paragraphs to find the exact
solutions.

Two of the authors independently derived the equa-
tions. They made the same choices of current branch
points, but different choices of paths for the independent
voltage loops and substitutions of algebraic variables.As
described above, there are 45 coupled equations and 46
non-zero currents for this circuit. However, 5 of the
currents (IcPt'lCD'Irrx,Ico.,and lor) can be easily obtained
after the other currents are individually expressed as
functions of lOt.For example, ICDcan be obtained once
10 and ICAare known by using the voltage loop CA,Zo,
CD,through the shield, and back to CA.The crux of the
problem is to solve the remaining 40 branch and loop
equations containing 41 coupled currents.

The two authors used different strategies to
"decouple" these 40 initial equations and thereby derive
the results. They then independently used Mathcad
PLUS 6 (Professional Edition for Macintosh comput-
ers)1 software to enter their own algebraic substitutions
and their own current equations, and then compared
numerical results. The 92 in-phase and out-of-phase
compon~nts of the 46 currents were in agreement to
within at least six significant figures for 80 of the com-
ponents when using the highest allowed precision of the
software and when the values were expressed in the
scientific notation 1.23456 X 10-YZ.The results agreed
to within five significant figures for three other compo-
nents, four significant figures for one component, three
significant figures for another component, and two sig-
nificant figures for yet another component. Therefore,
almost all results were in good to excellent agreement.
However, six components disagreed in the first signifi-
cant figure. These six components were the in-phase and
out-of-phase (imaginary) terms of II' and 13" and the
in-phase terms of IZIand Iz3'A troubling aspect of this
disagreement was that one author showed that the nu-
merical values of the in-phase term of IZ1for that solu-
tion depended on the order that the algebraic substitu-
tions were calculated in the exact equation, and how the
substitution terms were grouped in the equations. This

I Certain commercial equipment, instruments, or materials are identi-

fied in this paper to foster understanding. Such identification does n<?t

imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or

equipment are necessarily the best available for the purpose.

suggests a cumulative progression of computer round-
off errors in the calculations that affects some current
components.

Both authors also calculated the case where the wire-
to-wire capacitances approach zero by again using the
limiting values 10-60 F. The results were in good to
excellent agreement except for the out-of-phase term of
Ia (which differed in the second significant figure) and
the in-phase terms of II' and IZ1and out-of-phase terms
of 14,and IZ1(which differed in the first significant fig-
ure). Except for a difference in the second significant
figure for the in-phase term of 13,and in the first signif-
icant figure for the in-phase term of I)" the exact alge-
braic solutions that were finally chosen and discussed
below are in excellent agreement with the numerical
results listed in Eqs. (48) and (49) of Ref. [16] for zero
wire-to-wire capacitances.

The third author used the initial set of 40 coupled
current equations discussed below, again entered those
equations as a matrix array in the Mathcad) software,
and for particular numerical examples, inverted the ma-
trix to obtain numerical results that were in complete
agreement for almost all of the currents, and to help
resolve the above discrepancies in the other currents.
This method for solving the coupled equations is faster,
but less reliable, than solving the equations by hand,
since round-off errors can go undetected. It was not
possible to extend the matrix inversion calculations to
the limit of negligible wire-to-wire capacitances, but
most of the other results were in good to excellentagree-
ment with the exact solutions discussed below. However,
there were differences in the second significant figure
for the in-phase terms of 13,and Iz3, and in the first
significant figure for both the in-phase and out-of-phase
terms of I), and 13"

Neither of the two exact solutions, nor the matrix
inversionsolution, gave a complete set of correct current
equations. Each solution had several obvious inconsis-
tencies. This is possibly due to the cumulative effects of
computer round-off errors. We chose the exact solution
with the fewest inconsistencies, and then eliminated
those inconsistencies by substituting the approximate
solutions listed in Eqs. (53u), (53w), and (54e) for the
exact equations for 13"Iz3,and II', These final solutions,
with approximate solutions substituted for 13"Iz3,and I)"
were then checked at least twice by one of the authors.

In the final solutions discussed here, all 46 coupled
currents shown in Fig. 4 were expressed in terms of the
"core" currents 101,Ics, Is, lea' Id, Ie, Ib, la, IcA, and 10.
These "core" currents were then successively substi-
tuted into the remaining equations to obtain an equation
for each current that was expressed as functions of lOt.
This process involved 263 algebraic substitutions of
variables.
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It is not feasible to list the final solutions here. There-

fore, just as in the single-series "offset" case, we: (1)
present numerical examples of the currents and quantum
Hall voltage in Sec. 7.2; (2) list the approximate equa-
tions for the currents and quantum Hall voltage in Sec.
7.3; and (3) can supply the reader with a 29 page com-
puter printout which lists the 263 algebraic substitu-
tions, the exact current and quantum Hall voltage equa-
tions, the approximate equations, and numerical
calculations for a particular set of circuit component
values of the reader's choice.

7.2 Numerical Examples

We givehere numerical examples of how the parasitic
impedances within the ac QHRS affect the currents and
the measured values of VPt = VH(Y,Z)- rptfcPt.Cardinal
numbers are again usually assigned to the circuit ele-
ment components of Fig. 4 to emphasize that the results
presented below are not intended as calculations for a
specific sample probe. We will measure the actual val-
ues of all the parasitic impedance components of our
sample probes as a function of liquid helium level.

The cardinal values we use in most examples are

RH= 10411 (38a)

rs = rl = r2= r3= r4= rs = r6= ro = 1 11 (38b)

rOt= rOt= rpt= rOr= 10-3 11 (38c)

ra= rb = re= rd= 10-3 11 (38d)

rKA= rKB= 101211 (38e)

Cs = CI = C2= C3= C4= Cs = C6= Co = 10-10F (38f)

COt= COt= CPt= COr= 10-12 F (38g)

CA= CB= 10-12F (38h)

CI'2' = C3'4'= CS'6'= Cs'o' = CS'I' = CST = Cs's' = C2'o'

= C4'o'= C6'o' = 10-13 F (38i)

Ls = LI = L2= L3= L4= Ls = L6= Lo = 10-6 H (38j)

w = 104rad/s. (38k)

The 100 pF capacitances-to-shield values ofEq. (38f)
may be close to those that will be obtained in the short
NIST sample probe, but typical ac probes have values
around 250 pF. Note that CS'5'> CST> CS'I'> Cs'o' and
C2'o'> C4'o'> C6'o'in real sample probes because of in-

creasing physical separations between corresponding
pairs of inner conducting surfaces.

Using these cardinal numbers, and grouping similar
types of currents, the numerical results for the currents
shown in Fig. 4 are
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Iro,={[l.00000] - j[l.O X 10-11]}/ot (39a)

Is = {[0.99990] - j[6.1 X 10-S]} lOt (39b)

Id = {[0.99990]- j[l.O X 10-4]}/ot (39c)

Ie = {[l.00000] - j[l.O X 10-4]} lOt (39d)

Ib= {[l.00000]- j[l.OX 10-4]} lOt (3 ge )

la = ([0.99990] - j[l.O X 10-4]}lOt (39f)

10 = {[0.99990] + j[3.9 X 10-S]} 101 (39g)

IrDr= {[l.00000] + j [0.04020]}lOt (39h)

lOr = {[l.00000] + j[0.04030]}/Ot (39i)

IKB = {[l.0 X 10-12] + j[9.9 X 10-IS]}/Ot (39j)

IKA= {[l.0 X 10-8] - j[l.O X 10-12]}/Ot (39k)

ICB= {-[9.9 X 10-11]+j[l.O X 10-S]}/ot (391)

ICA= {[l.0 X 10-8]+j[l.O X 10-4]}/ot (39m)

Jc = {[l.0 X 10-22] + j[l.O X 10-1I]}/ot (39n)

16= {[l.0 X 10-4] + j[2.l X 10-S]} lOt (390 )

14= {[l.1 X 10-7] + j[2.0 X 10-S]} lOt (39p)

12= {[l.0 X 10-7] + j[2.0 X 10-S]}lOt (39q)

16,= {[l.0 X 10-4] + j[9.9 X 10-7]}/ot (39r)

14,= {[l.l X 10-7] + j[l.9 X 10-IO]}lOt (39s)

12, = {[l.0 X 10-7] - j[l.O X 10-11]} lOt (39t)

Is' = {[l.0 X 10-7] - j[l.O X 10-11]}/ot (39u)

h' = {[l.l X 10-7] + j[l.9 X 10-IO]}lOt (39v)

II' = {[l.0 X 10-4] + j[l.O X 10-6]} lOt (39w)

Izs = {[l.0 X 10-7] + j[2.0 X 10-S]} lOt (39x)



Volume 104, Number 6, November-December 1999

Journal of Research of the National Institute of Standards and Technology

We can see from the 90° out-of-phase (imaginary or j)
components of currents Izs,Is" Iz3,13',Iz1,11',and 10 that
the four shunt currents Ics,Ic3,ICI'and ICDall bypass the
QHE device. This is a great advantage of the quadruple-
series circuit because it reduces the errors due to the

parasitic capacitances Cs, C3,CI, and Co.
The out-of-phase components of shunt currents Ics,

Ic3, Ic., lCD'ICA'IcPt,and ICDrare much larger than for
shunt currents ICaand IcD/.because contact pads 5', 3', 1',
and D' are all near the quantum Hall potential, rather
than near the shield potential. A 1 % out-of-phase cur-
rent passes through each of the coaxial cable capaci-

tances Cs, C3,C), and CDin this example. That is not a
problem if there is enough adjustment in the bridge
Drive to provide this extra 4 % of out-of-phase current
to lor.

The exact equation for the measured ac quantum Hall
voltage is obtained by summing the voltages between
the inner conductors ofthe Detector coaxial port and the
Potential coaxial port. Takingthe path from the Detector
port to point Z, through arm 4, voltage generators Vc4
and Vc3,through arm 3 to point Y, then to the Potential
port we find that

VPt = RH/c + RH/4' + z4/4 + z3/z3 - rpt/cPt, (41)

which can be expressed as

VPt= VH(Y,Z) - rpt/cPt (42a)

or

VH(Y,Z) = [1 + Llyz]RH(i)/o!' (42b)

where Llyzis the correction factor to the intrinsic quan-
tized Hall resistance RH(i) of the QHE device.

The numerical results for this example are

VH(Y,Z)= {1 - [2.1 X 10-7] - j[1.0 X 10-4]}RH/ot
(43a)

Llyz= {-[2.1 X 10-7] - j[1.0 X 10-4]} (43b)

for 100 pF lead capacitances and the same values

Llyz= {- [2.1 X 10-7] - j[1.0 X 10-4]} (44)

for 250 pF coaxial leads. Therefore, the Llyzcorrections
are independent of the values of the capacitances-to-
shield.

If the wire-to-wire capacitances can all be reduced to
1 X 10-14F, then the in-phase and out-of-phase correc-
tions are

Llyz= {-[2.0 X 10-7] - j[1.0 X 10-S]} (45a)

and

Llyz= {-[2.0 X 10-7] - j[1.0 X 10-S]} (45b)

for 100 pF and 250 pF coaxial leads, respectively.
There is a -1 X 10-4 RH/otout-of-phase component

in the VH(Y,Z)signal for the numerical examples given
in Eqs. (43) and (44). Wewill see from the approximate
solution listed below in Eq. (55) that these out-of-phase
errors arise from the parasitic impedances.
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IZ3 = {[1.lx 10-7]+j[2.0x 10-1O]} lOt (39y)

IZI = {[1.0x 10-4] + j[2.1 x 10-S]}lOt (39z)

Is = {[1.1 x 10-6] + j[0.01002]}/ot (40a)

h = {[1.1 x 10-6] + j[0.01002]}/ot (40b)

II = {[1.0x 10-4]+ j[0.01002]}lOt (40c)

Ics = {[1.0 x 10-6] + j[0.01000]}/ot (40d)

IC3= {[1.0x 10-6]+ j[0.01000]}/ot (40e)

ICI = {[1.0 x 10-6] + j[0.01000]}/ot (40t)

ICD = {[1.0 x 10-6] + j[0.01000]} lOt (40g)

IcPt= {[1.0 x 10-8] + j[1.0 x 10-4]} lOt (40h)

ICDr= {[1.0 x 10-8] + j[1.0 x 10-4]}lOt (40i)

Ic6.D.={[1.0 X 10-9] + j[1.0 x 10-S]}lOt (40j)

Ic4.D.= {[1.0x 10-9]+ j[1.0 x 10-S]}lOt (40k)

ICz'D'= {[1.0x 10-9] + j[1.0 x 10-S]} lOt (401)

Ics.s.= {[1.0 x 10-9] + j[1.0 x 10-S]}lOt (40m)

ICs'3'= {[1.0x 10-9]+j[1.0 x 10-S]} lOt (40n)

ICs'I'= {[1.0x 10-9]+j[1.0 x 10-S]} lOt (400)

ICs'D'={[1.0 X 10-9] + j[1.0 x 10-S]}/ot (40p)

ICs'6'= {[1.0x 10-9] + j[1.0 x 10-S]} lOt (40q)

Ic3.4.;::::{[1.0 x 10-9]+j[1.0 x 10-S]} lOt (40r)

ICn.= {[1.0 x 10-9] + j[1.0 x 10-S]}/ot. (40s)
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The out-of-phase component of the ac quantum Hall
voltage signal is nulled with bridge balances. Balances
in NIST high precision ac bridges are capable of provid-
ing out-of-phase adjustment signals as large as 5 X
10-4 RHIObso the bridges can null this signal. However,
great care must be taken to calibrate and apply correc-
tions for the inadvertent injection of in-phase signal
resulting from the in-phase (phase defect) contributions
of the capacitor components used in the bridge balances
to null the out-of-phase component of the ac quantum
Hall voltage signal. These inadvertent in-phase (phase
defect) injection signals are unintentionallyadded to the
real in-phase component of the ac quantum Hall voltage
signal. The uncorrected phase defect error in the mea-
sured quantum Hall voltage has a linear frequency de-
pendence in NIST four-terminal-pair bridges. (Note that
normal ac reference resistors have very small capaci-
tances and inductances, and therefore these phase defect
errors can be neglected, but this is not the case for ac
quantum Hall standards.) Failure to properly account for
the phase defect errors may be a source of the linear
frequency dependences of the ac quantized Hall resis-
tances reported by other laboratories.

We see from Eqs. (42a), (43), (44), and (45) that the
real parts of the measured ac quantum Hall voltage VPl
and the internal voltage VH(Y,Z) appear to have unac-
ceptably large error terms, with values of -2 X 10-7
RH(i)lol for these two examples. However, we found in
Refs. [13] and [16] (and fmd again here) that VPt and
VH(Y,Z)are functions ofthe longitudinal voltage Vx(2,6)
along the device, where Vx(2,6) is measured between
room temperature access points 2 and 6. Therefore, the
equation for VH(Y,Z) can be expressed two different
ways: the way we have been using

VPl+ rpllcPt= VH(Y,Z)= [1 + L1yz]RHlol, (46)
and

VPl + rpl1cPt = VH(Y,Z) = [1 + Ovz]RHlol - Vx(2,6). (47)

The first term on the right hand side ofEq. (47) is the
ac quantum Hall voltage that we want to extract. This
term has a correction factor Ovzarising from parasitic
impedances in the ac quantized Hall resistance standard.
The second term on the right hand side ofEq. (47) is the
ac longitudinal voltage.Thus VH(Y,Z)is the ac quantum
Hall voltage across the QHE device (with corrections)
minus the ac longitudinal voltage Vx(2,6) along the
device.

It is crucial in Eq. (47) that both VPland Vx(2,6) be
measured under the same conditions. Unlike the single-
series "offset" case shown in Fig. 3, no currents pass
through capacitors C2and C4 in Fig. 4. Thus, to a high
degree of accuracy, there are no significant parasitic

impedance corrections to the ac value of Vx(2,6) in Eq.
(47), so

Vx(2,6) ==(rb + rc)lol' (48)

Another consequence of the requirement that both VPl
and VxC2,6)be measured under the same conditions is
that VPtand VxC2,6)should be measured during the same
cool-down.

yie suspect that the intrinsic longitudinal resistances
rb and rcare not frequency dependent, and therefore that
dc measurements of Vx(2,6) will suffice, but the ac
measurements described in Sec. 6.4 should also be
made in order to test this supposition. The single-series
"offset" ac Vx(2,6) measurements discussed in Sec. 6.4
will have to be corrected by the factor L126of Eq. (26) to
obtain the ac values of rb and rc to be used in Eq. (48).

It follows from Eqs. (46), (47), and (48) that the
correction factor Ovzto the ac quantum Hall voltage
RH(i)lol is

Ovz = L1yZ + (rb + rc)
RH

(49)

The predicted values of the intrinsic ac quantum Hall
voltage RH(i)lolhave the following correction factors 8H
in our numerical examples when the circuit element
components shown in Fig. 4 once again have values given
by Eq. (38), and the value of (rb+ rc) is 2 X 10-7 RH:

Ovz= {- [1.0 X 10-8] - j[1.0 X 10-4]} (50a)

for 100 pF lead capacitances and

Ovz= {-[1.0 X 10-8] - j[1.0 X 10-4]} (50b)

for 250 pF coaxial leads when the wire-to-wire capaci-
tances are all 1 X 10-13F.

If the wire-to-wire capacitances can each be reduced
to 1 X 10-14F, then the in-phase and out-of-phase cor-
rections are

Ovz= {-[1.9 X 10-10] - j[1.0 X 10-S]} (51 a)

and

Ovz={-[1.9 X 10-10]- j[1.0 X 10-S]} (51b)

for 100 pF and 250 pF coaxial leads, respectively. The
Ovzcorrections are independent of the values of the
capacitances-to-shield. We will see in the approximate
solution Eq. (55) that the out-of-phase and the in-phase
components of L1yZand Ovzdepend on the summed-total
of the wire-to-wire capacitance values, and on the
square of these summed-totals, respectively.
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The -1 X 10-8 RHloterror in the in-phase compo-
nent of the ac quantum Hall voltage RH(i)lot in Eq. (50)
is quite manageable. Furthermore, it can be corrected
using numerical calculations. Uncertainties can be as-
signed to this correction by varying the values of the
circuit element components within the measurement un-
certainties in the calculations, and by using the approx-
imate solution given in Eq. (55). We have already dis-
cussed the fact that the -1 X 10-4 RHlotout-of-phase
component of RH(i)lotin Eq. (50) can be handled if care
is taken to calibrate and apply corrections for the small
in-phase (phase defect) contributions of the bridge com-
ponents used in the bridge balances to null the out-of-
phase component of the ac quantum Hall voltage signal.

The quadruple-series circuit is an excellent candidate
as an ac QHRS. We next give the approximate solutions
for the currents and the quantum Hall voltage to show
"thesources of the in-phase and out-of-phase errors.

7.3 Approximate Quadruple-Series Solutions

The terms in the following approximate solutions
were again obtained in a tedious process by changing
the individual values of circuit element components
shown in Fig. 4 by an order of magnitude in the com-
puter program; observing the calculated results; and
then using "educated guesses" and "trial-and-error" to
find algebraic expressions that duplicate these results.
The approximate solutions yield results that agree to
within at least two significant figures for both the real
and imaginary parts of the exact numerical results listed
in Eqs. (39) to (40), (43) to (45), and (50) to (51).

All the terms in the approximate equations were
found to be necessary for the particular sets of circuit
component values tried so far, but other terms may very
well need to be added to these approximate equations if
the circuit components have values significantly differ-
ent from the cardinal numbers listed in Eq. (38). The
reader should again be cautioned that it is the exact
equations that are the most reliable, not the approximate
equations. However, the approximate solutions do
provide physical insight into the sources of error in
quantum Hall voltage measurements.

Once again, let Cx'x' be the summed-total of all the
wire-to-wire capacitances,

Cx'x' = CS'D'+ CS')' + CST + Cs's' + C2'D' + C4'D' + C6'D'

+ C1'2' + C3'4'+ Cs'6" (52)

Then

1cQI ==lCOta= {[w2COtCOtrOtrOt] + j[wCotrot]}lot (53a)

lrOt==lrOta= lOt - lCOta (53b)

{[
1 - rs

]

.[ LS

]Is ==Isa = R;;- - J wCOtrOt + w RH

- jW(C2'D'+ C4'D'+ C6'D'+ C)'2'+ C3'4'+ CS'6,)RH]}lot (53c)

1cB==1cBa= {[w2CBCOtrSrOt - W2CBLS]

+ [W2CB(C2'D' + C4'D' + C6'D' + C)'2' + C3'4'+ CS'6,)RHrs]

+ j[wCBrs]}lot (53d)

1KB == 1KBa = { [
~ ]+ j [

w LS
]rKB rKB

- j [w( C2'D'+ C"D'+ C6'D' + C 12'+ C",+ C,... )RH ;:J}10'

(53e)

1d==lda= Isa+ 1cBa- {j[W(CS'D'+ CS't'+ CST+ Cs's,)RH]}lot
(53t)

{ [
rs

]
.[ Ls rd ]16 ==16a = - + J w - + WCBrs -RH RH RH

+ j[W(C6'D' + CS'6,)RH]}10t (53g)

lC6'D' == 1c6'D' = {[W2CX'X,C6'D,RHRH + W2C6'D,LD]a .

+ j[wC6'D,RH]}10t (53h)

lCS'6' ==lCs'6'a = {[W2Cs'6,Cx'XRHRH] + j[wCs'6,RH]}10t
(53i)

{[
rs

]
.
[ Ls rd]16,==16'a= - + J w- + wCBrs-RH RH RH

- j[W(Cx'X'- C6'D'- CS'6,)rs]}10t (53j)

Is' ==Is'a = {[;:]+j[wCBrs ;:]

- j[wCx'x,rc]}10t (53k)

1cS'S'==1cS'S'a= {[w2Cs,s,Cx'x,RHRH - w2CBCS's,RHrS]

+ [w2Cs's,Ls] + j[wCs's,RH]}10t (531)

1z ==If. = Is' + { [w2CX'x' (Cs'S' + CS'6,)RHRH]S Sa a

+ j[w(Cs's' + CS'6,)RH]}10t (53m)
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Ics ::: Ics = {[w2CsCx'X,RHRH - W2CBCsRH rs]a

+ j[wCsRH]}IOt (53n)

Is ::: Is. = Izs. + Ics. (530)

Ie::: lea= Ida - Is'. + 16'. (53p)

1 1
{[

re rsr6
]

.

[ C rb
]4::: 4.= RH + RHRH + J w BrSRH

+ .[ Ls r6 + L6 rs

]
J W-- W--

RHRH RHRH

+ j[W(C4,O' + C3'4,)RH]}IOt (53q)

IC4'D' ::: IC4'D' = {[W2CX'X,C4'O,RHRH + W2C4'O,Lo]a

+ j [wC4'o,RH]} lOt (53r)

IC3'4'::: IC3'4'. = {[W2CX'X,C3'4,RHRH] + j[wC3'4,RH]}IOt

(53s)

14,:::14'. = 14. - {j[W(C4'D' + C3'4,)RH + wCx'x,re]}IOt

(53t)

{ [rb rl ro ]
.
[ C re

]
13,:::13'a= -+- +J W BrS-RH RHRH RH

.

[ LI ro + Lo rl ]+J w.-- w--
RHRH RHRH

- j[wCx'X,re]}IOt (53u)

ICS'3' ::: ICs'3'. = {[ W2CS'3,CX'X,RHRH]

+ [W2CS'3'Ls]+ j[wCS'3'RH]}IOt (53v)

IZ3::: IZ3a= 13'a + U[w(CS'3' + C3'4)RH]}IOt (53w)

IC3 ::: IC3 = {[W2C3CX'x,RHRH - W2CBC3RH rs]a

+j[wC3RH]}IOt (53x)

h :::13.= Iz3.+ IC3. (53y)

Ib::: lb. = Ie. - h'a + 14'. (53z)

12:::12a= {[;:+ W2CX'X'(C2,O' + CI'2,)RHRH]

+ j [wCBrS ~: + W(C2'O' + CI'2')RH]}IOt (54a)

IC2'D'::: IC2'D'. = {[W2CX'X,C2'O,RHRH + W2C2'O,Lo]

+ j[wC2'oRH]}IOt (54b)

IC.'2'::: ICI'2'a = {[W2CX'X,CI'2,RHRH] + j[wCI2,RH]}IOt
(54c)

12,:::12'a= 12. - {[w2CX'X'(C2.0, + CI'2,)RHRH]

- j[W(C2'D' + CI'2,)RH + WCX'x're]}IOt

{[
rD

]

.
[ rD LD

]
II'::: Il'a = - + J wCBrs - + wCArD+ w-RH RH RH

(54d)

- j[w(Cx'x' - CS'I' - C('2,)rD+ wCx'x,re]}IOt (54e)

Ics'l' :::lcs'l' = {[ W2CS'I,CX'x,RHRH].
+ [W2CS'I,Ls] + j[wCs'I'RH]}IOt

IZ1 ::: Iz1. = II'a + {j[w(CS'I' + CI'2,)RH]}IOt

lei ::: ICI. = {[W2CI CX'xRHRH - W2CBCIRHrs]

+ j[wCIRH]}IOt

II :::II. = Iz1. + ICt.

Ia ::: Iaa = Iba - II'. + 12'a

ICS'D'::: ICs'D'. = {[W2CS'D,CX'xRHRH]

+ [W2CS'D'(Ls + LD)] + j[wCs'DRH]}IOt

1K. z 1K.. = {[~:]- j[wCars ~:]}1,"

ICA::: ICAa = {[W2CACX'xRHRH]

+ [W2CALD] + j[wCARH]}Iot

ID:::ID. = {[ 1 - ;:]+j[wCARH - w ~:]

(54f)

(54g)

(54h)

(54i)

(54j)

(54k)

(541)

(54m)

- j[w(Cs'I' + CS'3'+ CST + CI'2'+ C3'4'+ CS'6,)RH]}Iot
(54n)

IcD::: ICD.= {[ W2CDCX'xRHRH]

- [W2CBCDRHrs]+ j[wCoRH]}/ot
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fcPt == fcPt = {[w2CPtCx'x.RHRH].
- [w2CaCptRHrS] + j[wCptRH]}lot (54p)

lrDr ==lrDr. = lOt + lcs. + lC3.+ lCI. + lCA. + lCD. (54q)

lCDr ==lCDr. = {[ w2CorCx.xRHRH]

- [W2CaCorRHrS]+ j[wCorRH]}lot (54r)

lor ==lor. = lOt+ lcs. + lC3.+ lcl. + lcA. + leD.' (54s)

Expressing Eq. (41) in the form (42),

Llyz==Llyz. = {
-

[
(rb + rc) _ (r2rb + rs rc)

]RH RHRH

- [ w2Cx'x.Cx'x.RHRH - w2CaCx'x.RHrS]

- [w2Cx'x.Ls + W2CaLS]

- j[wCX'X.RH- wCars + wCOtrOt+ wCptrpt]}. (55)

It would have been difficult to predict some of these
approximate current and voltage solutions without first
knowing the exact results.

We see from Eq. (55) that the main source of the
in-phase and out-of-phase corrections to the quantum
Hall voltage signal arises from terms involving the
summed-total, Cx'x" of the wire-to-wire capacitances. It'
is therefore important to minimize these wire-to-wire
capacitances in ac quantized Hall resistance sample
probes.

8. Conclusions

We have used an equivalentelectrical circuit model of
the quantum Hall effect device to calculate the effects of
parasitic impedances that are present in four-terminal-
pair [23,24] measurements of ac quantized Hall resis-
tance standards. The discrete circuit components in-
clude the minimum number of externally measurable
parasitic capacitances, inductances, and leakage resis-
tances necessary to account for the electrical character-
istics of the standard.

Both exact and approximate algebraic equations have
been derived for the currents and quantum Hall voltages
for single-series "offset" and quadruple-series circuit
connections to the device. Wepredict that the quadruple-
series connections are the only ones that can meet our
desired goal of measuring the quantized Hall resistance
RHwith an absolute accuracy of 10-8RHor better in the

same cool-down for both ac and dc currents with all
sample probe leads attached. We also predict that the
single-series "offset" connections can be used to ade-
quately measure the ac longitudinal resistance Rxduring
that same cool-down.

It is crucial in these measurements of RHand Rx that
the wire-to-wire capacitances of the quantum Hall
device and its sample holder be made as small as possi-
ble. It is also crucial that care be taken to calibrate and
apply corrections for the in-phase (phase defect) contri-
butions of the bridge components used in the bridge
balances to null the out-of-phase component of the ac
quantum Hall voltage and ac longitudinal voltage sig-
nals.

Finally,we caution the reader that this analysisapplies
only to the ac quantized Hall resistance standard itself.
The analysis does not consider the effects of (a) im-
proper realization of the four-terminal-pair measure-
ment definition; (b) systematic errors in the ac and dc
bridges; and (c) inadequate frequency dependence cor-
rections of the ac reference impedance standards to
which the ac quantized Hall resistance standard is com-
pared. .

Acknowledgments

Wethank Drs. Kevin C. Lee and Michael H. Kelley of
the Electricity Division of NIST, and Dr. Jin S. Kim of
the Semiconductor Electronics Division of NIST for
their discussions and comments.

9. References

[I] K. von Klitzing, G. Dorda, and M. Pepper, New Method for

High-Accuracy Detennination of the Fine-Structure Constant
Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494-

497 (1980).

[2] The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds.,

Springer-Verlag, New York (1987) pp. 1-419.

[3] The Integral and Fractional Quantum Hall Effects, C. T. Van

Degrift, M. E. Cage, and S. M. Girvin, eds., American Associa-

tion of Physics Teachers, College Park, Maryland (1991) pp.
1-116.

[4] F. Delahaye, Accurate AC Measurements of the Quantized Hall

Resistance from I Hz to 1.6 kHz, Metrologia 31, 367-373

(1995).
[5] B. M. Wood, A. D. Inglis, and M. Cote, Evaluation of the AC

Quantized Hall Resistance, IEEE Trans. Instrum. Meas. 46, 269-

272 (1997).

[6] J. Melcher, P. Warnecke, and R. Hanke, Comparison of Preci-
sion AC and DC Measurements with the Quantized Hall Resis-
tance, IEEE Trans. Instrum. Meas. 42, 292-294 (1993).

[7] A. Hartland, B. P. Kibble, P. J. Rodgers, and J. Bohacek, AC

Measurements of the Quantized Hall Resistance, IEEE Trans.

Instrum. Meas. 44, 245-248 (1995).

555



Volume 104, Number 6, November-December 1999

Journal of Research of the National Institute of Standards and Technology

[8] J. Bohacek, P. Svoboda, and P. Vasek, AC QHE-Based Calibra-
tion of Resistance Standards, IEEE Trans. Instrum. Meas. 46,

273-275 (1997).
[9] A. Hartland, B. P. Kibble, and S. W. Chua, AC Quantized Hall

Resistance Experiments at the National Physical Laboratory,

BEMC '97 Conference Digest, National Physical Laboratory,

Teddington, U. K. (1997) pp. 18-1 to 18-4.

[10] F. Delahaye, Technical Guidelines for Reliable Measurements

of the Quantized Hall Resistance, Metro10gia 26, 63-68 (1989).

[II] F. Cabiati,L. Callegaro,C. Cassiago,V. D'Elia, and G. M.
Reedtz, Effect of the Frequency on the Longitudinal Resistance
of a GaAs-AIGaAs Heterostructure, CCE/97-32, 1-5 (1997).

[12] A. Jeffery, R. E. Elmquist, J. Q. Shields, L. H. Lee, M. E. Cage,
S. H. Shields, and R. F. Dziuba, Determination of the von

Klitzing Constant and the Fine-Structure Constant through a

Comparison of the Quantized Hall Resistance and the Ohm
Derived from the NIST Calculable Capacitor, Metrologia 35,

83-96 (1998).

[13] M. E. Cage, A. Jeffery, R. E. Elmquist, and K. C. Lee, Calculat-
ing the Effects of Longitudinal Resistance in Multi-Series-Con-

nected Quantum Hall Effect Devices, J. Res. Natl. Inst. Stand.

Technol. 103 (6), 561-592 (1998).

[14] A. Jeffery, R. E. Elmquist, and M. E. Cage, Precision Tests of
a Quantum Hall Effect Device DC Equivalent Circuit using

Double-Series and Triple-Series Connections, J. Res. Natl. Inst.

Stand. Technol. 100 (6), 677-685 (1995).

[15] M. E. Cage and A. Jeffery, A Problem in AC Quantized Hall
Resistance Measurements and a Proposed Solution, J. Res. Natl.

Inst. Stand. Technol. 103 (6), 593-604 (1998).

[16] M. E. Cage and A. Jeffery, Analyzing the Effects of Capaci-

tances-to-Shield in Sample Probes on AC Quantized Hall Resis-
tance Measurements, J. Res. Natl. Inst. Stand. Technol. 104,

323-347 (1999).

[17] B. N. Taylor and T. J. Witt, New International Electrical Refer-

ence Standards Based on the Josephson and Quantum Hall Ef-
fects, Metrologia 26, 47-62 (1989).

[18] M. E. Cage, B. F. Field, R. F. Dziuba, S. M. Girvin, A. C.
Gossard, and D. C. Tsui, Temperature Dependence of the Quan-

tum Hall Resistance, Phys. Rev. B 30, 2286-2288 (1984).

[19] M. E. Cage, R. F. Dziuba, B. F. Field, E. R. Williams, S. M.
Girvin, A. C. Gossard, D. C. Tsui, and R. J. Wagner, Dissipation

and Dynamic Nonlinear Behavior in the Quantum Hall Regime,

Phys. Rev Lett. 51, 1374-1377 (1983). .
[20] M. E. Cage and A. Jeffery, Intrinsic Capacitances and Induc-

tances of Quantum Hall Effect Devices, J. Res. Natl. Inst. Stand.
Technol. 101 (6), 733-744 (1996).

[21] B. W. Ricketts and P. C. Kemeny, Quantum Hall Effect Devices
as Circuit Elements, J. Phys. D: Applied Phys. 21, 483-487

( 1988).

[22] F. Delahaye, Series and Parallel Connection of Multiterminal
Quantum Hall Effect Devices, J. Appl. Phys. 73, 7915-7920

(1993).

[23] R. D. Cutkosky, Four-Terminal-Pair Networks as Precision Ad-
mittance and Impedance Standards, Commun. Electron. 70, 19-
22 (1964).

[24] R. D. Cutkosky, Techniques for Comparing Four-Terminal-Pair
Admittance Standards, J. Res. Natl. Bur. Stand. (U.S.) 74C,

63-78 (1970).

[25] D. N. Homan, Applications of Coaxial Chokes to AC Bridge
Circuits, J. Res. Natl. Bur. Stand. (U.S.) 72C, 161-165 (1968).

[26] F. Piquemal, G. Trapon, and G. Geneves, AC Measurements of
the Minimum Longitudinal Resistance of a QHE Sample from

10Hz to 10kHz, IEEE Trans. Instrum. Meas. 45, 918-922

(1996).

About the authors: M. E. Cage and A. Jeffery are
physicists in the Electricity Division of the Electronics
and Electrical Engineering Laboratory. J. Matthews is
a graduate student pursuing his Ph.D. at the Centerfor
Superconductivity Research in the Physics Department
of the University of Maryland, and is also a guest re-
searcher in the Electricity Division at NIST. The Na-
tional Institute of Standards and Technology is an
agency of the Technology Administration, u.s. Depart-
ment of Commerce.

556


