
7~ S~ "i~,'

Role of Distributed Objects in Healthcare
"

Plan for your next Hospital Information System
Technology and Enterprise Survival

29 & 30 October 1998

National InsJitute of Standards and Technology
Gaithersburg,Maryland

Brady/St.Pierre 1

Conformance Testing Object-Oriented
Frameworks Using JAVA
Kevin G. Brady and James St.Pierre

Electronic Information Technologies Group
National Institute of Standards and Technology
Gaithersburg. MD 20879

Abstract

This paper details the assumptions, decision processes, and conclusions reached
during the development and implementation of a Conformance Testing Tool using the
JAVA [refer:JAVA] programming language, and the Object Management Group's
(OMG's) Common Object Request Broker Architecture (CORBA) specification
[refer:CORBA] for distributedobjectcommunication.JAVAwasused to implementthe
tests, and CORBA was used to provide the communication interface between the JAVA
tests and the object under test. This test tool i s being continually refined and expanded by
the National Institute of Standards and Technology (NIST), but it was initially conceived
as part of a collaborative effort between NIST and SEMATECH,1994 to 1997, in support
of the development of the SEMATECH Computer Integrated Manufacturing (CIM)

Framework [refer:CIMF]. SEMATECH 1 had the foresight to include plans for
confonnance testing at the early stages of the CIM Framework specification development,
and asked NIST to assist in this task. Although this initial implementation was developed
for the semiconductor industry, the concepts, software and conclusions are relevant and
applicable to conformance testing of any object-oriented framework.

Introduction

The programming language "JAVA" and its relationship to the World Wide Web
(WWW) is familiar to most people. Although most people are familiar with the name,

1. Specifically, Alan Weber, project leader for the SEMATECH CIM Framework.

5th August, 1997

2 Conformance Testing Object-Oriented Frameworks Using JAVA

they are unfamiliar with what JAVAactually is and what it actually does. Never before
has a computer language been developed that has been so widely accepted and
implemented [refer:JAVAFACT]. JAVA is an object oriented programming language,
whose primary difference from other object oriented programming languages is its ability
to run on any computer platform that supports the JAVAVirtual Machine (NM). The
JVM is the software which is embedded in web browsers to allow them to run JAVA

applets - software programs written in JAVA.The most exciting aspect of JAVAis its
potential to allow programmers to "write once, run anywhere." This goal has not yet been
fully achieved, but with the amount of industry and research resources being applied to
the problem it is expected that it could be achieved in the near future. JAVAis riding on
the coat-tails of success the WWW has experienced. The ability to run JAVAapplets is
now found in almost all web browsers. It is interesting to note that many people do not
realize that the browser they use to "surf the web" contains a JAVAVirtual Machine. [As

people surf the web they encounter JAVAapplets all the time, and some may not even
realize that they are running an "applet."] Software conformance testing methodologies
have always been faced with the difficulty of providing testing tools that are portable
across a wide variety of heterogeneous platforms [refer:NlST]. The widespread
availability of the JAVAprogramming language makes it an icleal candidate [or use in
conformance testing.

SEMATECH's CIM Framework Specification is a document which defines an

application framework for Computer-Integrated Manufacturing (CIM) within
semiconductor factories. A framework is a software infrastructure that creates a common

environment for integrating applications and sharing information in a given domain.
While originally designed to support semiconductor manufacturing, the design of the
CIM Framework does not prohibit its extension into other manufacturing domains
[refer:CIl\1]. The ClM Framework specification describes the object abstractions,
attendant services, and message protocols necessary to build compatible applications for
the semi-conductor manufacturing floor. Because the CIM Framework is defined as a
collection of objects (using the OMG's Interface Definition Language (IDL)) which can
communicate via OMG CORBA technology, it readily lends itself to the use of an object

oriented programming language, such as JAVA,for conformance and certification testing.

5th August, 1997

Brady/St.Pierre 3

Conformance Testing -Myths and Methodologies

Conformance testing in general has two major beneficiaries; the application user and
the application developer. The application user, or organization, benefits from the

assistan~e conformance testing provides to the creation of procurement specifications.
When a user wishes to purchase software, conformance testing provides a means for them
to "measure" the level of conformance of a software application to the specification
(often an ANSIJISO standard). The user can then procure software with a greater
understanding of the comp leteness of the application (i.e., conformance). This
information can also be used as a requirement specification in the s election process. Thus,
for the user, the completeness of the application can be directly measured.

The application developer, or vendor, benefits from the availability of a conformance
test tool. As an application is developed, conformance tests can be run against the
individual "pieces" to ensure correctness, before they are integrated to form larger
applications. Correcting errors at the earliest possible point in the development process is
cost effective for vendors. Developers do not have to wait until they have completed a
software project to begin running the conformance tests. Issues as simple as "inconsistent
interpretation" 0 f a specification can be eliminated from the software development
process by having conformance tests available at the earliest possible cycle of the
process. By following this methodology the developer can have a high degree of
confidence that the software product will be conformant when it is completed.

In trying to develop a test suite before an actual implementation is available,
checking the correctness, depth, and breadth of the test suite becomes very difficult. Most
developers of conformance tests use alpha and beta versions of a vendor's
implementation to exercise the test suite, hoping to flush out any major errors in the tests
being developed. [The reason most conformance test suites are so very far behind the
development of the actual software is that they are waiting for something to test; at the
same time the vendors need tests to verify their implementation code.] This creates a
classic "chicken and egg" problem. In an effort to address this problem, researchers at

NIST are developing a software tool that will allow test developers to simulate
application software, so that the test suite can be developed prior to the existence of any
commercial implementations. The Manufacturer's CORBA Interface Testing Toolkit
(MCIIT) cUlTentlyunder development in the Manufacturing Engineering Laboratory

5th August, 1997

4 Conformance Testing Object-Oriented Frameworks Using JAVA

(MEL) at NIST, will be able to simulate objects given a description of their behavior
[refer:MCITT]. This testing tool will be used in the 'next phase of this project when we
develop more of the actual test suite. So that the test suite can be verified, the MCIIT
reads a file containing Interface TestingLanguage (ITL) definitionsand generates skeletal
objects that respond correctly to inquiries. As a simple example, assume an object has a
name parameter and a status parameter. The test tool would read the definitions and
automatically create an object that replies with a character name and the correct status,
but does not have to implement the functionality of the object. The test suite then
requests, and subsequently verifies, the name and status from the object. The availability
of such a test tool allows conformance tests to be developed well in advance of the actual
implementation. One advantage the test tool has over an actual implementation is that
faults can be programmed as well, something actual objects can not do (e.g., simu late
failures of objects). Tools of this nature will make conformance testing and development
of the software they test much more independent, decoupling the dependence of one upon
the other.

Conformance Testing - Object Oriented Style

As stated above, the goal of this project was to develop a prototype implementation
demonstrating the process of conformance testing a working implementation of the
SEMATECH CIM Framework. The CIM Framework is an Object-Oriented (00)

speci fication, and therefore posed additional considerations not found in most simple
applications. Chief among those considerations was the "language" to use to implement
the test suite. Since it is an Object-Oriented application, an 00 programming language
was a primary requirement. Until a few years ago, the choices were very limited and C++
would most likely have been the language of choice. But with the many different
"flavors" of C++, multiple copies of a test suite, compiled for different hardware
platforms would have been necessary. With the advent of the WWW and the JAVA
programming language a new choice was available. The pros and cons of each of these
languages will be discussed later in this paper. The widespread availability via web
browsers and the platform independence of JAVAmake this language particularly useful
for conformance testing. As we shall see, distribution of code, version control, running of
the test suite and certification are greatly simplified using JAVAand CORBA.

5th August, 1997

Brady/St.Pierre 5

Interface Definition Language (IDL)

In order for two pieces of software to interact, a common interface must be defined.
Usually, for non Object Oriented software, this interface is simply a set of subroutine

calls with the number and types of each parameter strictly defi ned. As an example,
consider a graphics library. To draw a simple line a user would call a subroutine "line"
with four integer parameters. The four parameters would represent two sets of X and Y
coordinates, the start and end points of the line to be drawn. Each routine in the library
would have a specified number of par ameters and each of a specific type (e.g., character,
integer, etc.). In the Object Oriented (00) world, interaction is a more complex issue,
because each object not only has attributes of specified types, but can contain its own set
of function calls that operate on those attributes. A more robust system for defining
objects was required. The Interface Definition Language (IDL) is the unifying bond that
most object oriented frameworks share. It allows the framework developer to express the
application interface completely, so that two different implementations can interact. The
SEMATECH CIM framework IDL describes the attributes and behaviours for each of its

objects. The implementor builds each object according to the specification, with a
common interface to the object instances. Most object-oriented languages contain a
special compiler for IDL to assist the implementor. The compiler parses the IDL and
creates "stub" files (e.g., skeleton files) for both the client and server applications. The
programmer provides additional code to implement the object behaviours and inserts it
into the skeletal routines created by the compiler. This ensures that the application
interface remains exactly as specified, with no errors in th e definitions of the object's
interface.

The Object Management Group (OMG) is the standards body responsible for IDL.
The OMG does not develop standards, rather they endorse implementations that become
standards. The IDL definition for JAVAwill soon be a standard, and will be the last piece
of the conformance testing puzzle to fall into place. Once the IDL definition is complete,
JAVAapplications will soon begin to flourish and surpass their peer C++ implementations
(at least in client applications).

5th August, 1997

""I I

6 Conformance Testing Object-Oriented Frameworks Using JAVA

Common Object Request Broker Architecture (CORBA)

Another piece of the puzzle was solved by using CORBA for communications.
Writing the test suite as a JAVAapplet introduced certain security restrictions of JAVA. A
JAVAapplet cannot open a connection to any computer except the computer (web server)
it originated from. An applet down loaded from a web server cannot open a connection to
the users local machine. This restriction is easily removed if the user down loads the code
and runs it as a JAVAapplication on their computer. However, another option is possible
using CORBA and the Object Request Broker (ORB) on the web server. The JAVAapplet
can connect to the ORB running on the web server, and with information provided by the
user, that ORB can then make the connection to the user's ORB using the Internet Inter-
Orb Protocol (IIOP). CORBA defines the standard protocol for the two ORBs to
communicate (See Figure 1). The server ORB then simply relays all test requests to the
client ORB, and relays back the results to the JAVA applct. This simple connection

prevents the user from having to down load the software and run it as an application that
has no security restrictions.

JAVA vs. C++

c++ has been in development for years and lacks only one real quality that JAVA
possesses, widespread implementation. Technically speaking, JAVAis a subset of C++, so
there are things you can do in C++ that cannot be done in JAVA(e.g. pointers, multiple
inheritance, etc.). JAVAstarted out as the "Oak" programming language developed by
SUN Microsystems for use in the consumer electronics industry. Oak was intended to
address a problem that new semiconductor chips presented. In the consumer electronics
industry, chip designs were evolving very rapidly, and new software had to be written for

each chip, compiled and loaded. The idea was to develop an architecture in which
software could be "down loaded" to any new chip. Since it was interpretive, the new code
would not have to be compiled for each chip, thus saving precious time and money. When
the WWW came into existence, it initially only served HTML pages to browsers. The
JAVAdevelopment team quickly realized it could also "serve" programs to web browsers
in much the same way that chips were being loaded. JAVAquickly developed the needed
functionality to integrate with the web and is cun-ently implemented directly in most web
browsers. This gives JAVAthe wide-spread availability that C++ does not have, making it

5th August, 1997

~

Brady/St.Pierre 7

Figure 1. ConformanceTestingEnviromnent UsingJava and CORBA

\

Supplier
SEMATEC

CIM
Framework
Application

I
D
L

r 7
I

(:?)
Internet / /

I /
I · NffiT /
I /

flOP ORB /
I /

/
\

/

" " " " "
....

.....
....

....
....

/
/

/
/

/
/

/
/

/
/

V

""
,,-,-'

-,-,-'-'
~-,-'

I Java
D Test
L AppletL..--

Report Results

IDL

SEMATECH
CIM

Framework
Specification

a more desirable programming language for the delivery of conformance tests.

c++ will probably remain the language of choice for implementing server side code
(the actual functionality of the objects). In conformance testing, JAVAis sufficient to
query the objects under test. The IDL compilers exist to assist in writing the client side
tests, allowing the tester to instantiate an object and test all of its attributes and functions.

5th August, 1997

8 Conformance Testing Object-Oriented Frameworks Using JAVA

Graphical User Interface (GUI)

Perhaps the most beneficial aspect of the JAVAlanguage7in our opinion7has turned
out to be the Abstract Windowing Toolkit (AWT). The AWT is built-in to JAVA,and

the~eforecontained in most browsers. The AWT provides comparable functionality to the
X windowing system, allowing the creation and deletion of windows7buttons7graphics,
etc. When developing a conformance test suite in the past7 the use of any GUI was
impossible. No single windowing package was built for all systems7_ and therefore,
anything used could not be assumed to be available on all systems. Hence7the test suite
was distributed on all types of magne tic media (e.g.7 disks, tapes, etc.) or left in a
directory for anonymous ftp access in many fonnats (e.g.7 tar files, zip files) for
workstations, PCs, and mainframes. A document had to be written explaining how to
install, run, and interpret the results of the test suite. Now, with JAVAand the AWT, a
user interface can be written to step the user through the running of the tes t suite with the
click of a mouse, and the results can be analyzed and displayed by the GUI in any
appropriate format. By simply distributing a Universal Resource Locator (URL) of your
test suite, the user can load it via his browser. With the click of a mouse, you have
distributed the software in a single format7installed it, and as the AWT interface runs, it
steps the user though the process of executing the test suite and interpreting the results.
Results of the test can be displayed graphically, and the final results displayed (pass or
fail), without the user having to analyze any of the results. Conformance certifications7
which in the past required an on-site visit to verify the integrity of the test suite source
code, can be done remotely. Applets can be signed using internet security procedures
with digital signatures7authenticating the user and validity of the source code. Since the
codeis distributed"read-onlf', no on-sitepresenceis requiredto guaranteesourcecode
integrity.

The JAVAtest tool provides an ideal harness for conformance testing. The only thing
that must change from application to application are the actual conformance tests. The
AWT portion can be developed and mostly re-used for each software test suite developed.
Source code can be down loaded for viewing, help files distributed, and descriptions of
the tests can distributed via the WWW using HTML instead of writing and distributing a
paper document. Version control problems for test suites are eliminated because each
time a user runs the test suite, they are down loading the latest versions of the tests.

5th August, 1997

Brady/St.Pierre 9

The JAVA Test Tool

With all the pieces in place, the development of the JAVAICORBA-basedtest tool
could begin. The first step was to build a small reference implementation. Since, as
mentio~ed above, no commercial implementations existed, and the NIST MCITT test tool
was not yet available, the class Resource and ResourceManager from the ClM framework
were implement ed. The IDL definitions were run through a C++ IDL compiler, to
generate both client and server stub files. Then, the functionality in the server module,
and a client to drive the server, were implemented. Again, these two were written in C++
to verify the IDL implement ation (See the source code at the URLreferenced below).

Next, when the C++ client and server were interacting cOITectly,a JAVA-basedclient
to drive the C++ server was developed. The same IDL was put through a JAVAIDL
compiler to generate the JAVAclient stubs. The client code was then developed in JAVA
and tested to verify that a JAVAclient could interact with a C++ server through the ORB.
Since most of the interaction occurs in the ORB and is not visible to the user, a small

JAVAthread was developed to graphically display the creation and deletion of the objects
as they occur. This gives the programmer visual confinnation that the objects are indeed
created, and is a true necessity for demonstration purposes.

Once we had verified the interaction of JAVAclients and C++ servers, it was time to

develop the actual test harness and test suite. The test harness impl emented as a JAVA
applet, and the ORB, must reside on the web server. The GUI development had one
major goal - make the running of the test suite as effortless as possible for the user. (This

ease of use was achieved by having the user simply supply the address of the machine
wher e the application under test resided. The test tool then queries the OR B on his
machine for available servers. Upon selection of a server, with one more click of the
mouse we could then run the entire test suite against his implementation. The results of

tests are displayed graphically. Each of the 105 classes tested is listed, with green
indicating conformant results and red indicating failed results.

For the classes that failed, the first thing an implementor would like to do is view the
individual tests that were run against that class. The implementor is permitted to load the
individual class, and then run the subset of tests pertinen t to that class. Again, results of
the tests are displayed graphically, listing the individual tests that passed in green and

5th August, 1997

10 Conformance Testing Object-Oriented Frameworks Using JAVA

failures in red, along with the test numbers. With the click of a mouse, he can view a

master list of tests for this object, listed by test number, with a brief description of the
purpose of the test. After selecting the test that failed, he can then view the actual JAVA
source code of the test, to allow him to see exactly how the test was constructed. The test

c~ be re-run individually, so changes he makes to his implementation can be tested
immediately, without having to redo tests that have already passed. This methodology is
continued until all tests have passed.

The last part of the conformance testing process would be the certification of the
implementation. This normally would have required a site visit, but the next part of this
project will outline the security req uired to perfonn the certification remotely. With
proper security measures in place, the vendor could be issued a certificate detailing the
level of conformance to the standard being tested.

Summary

The JAVAlanguage is widely used and implemented, and provides a viable language
for use in conformance testing. In conjunction with the OMG's CORBA, it can provide a
very effective harness for implementing and delivering a test suite for various
applications. Our experience to date has demonstrated its usefulness in the Object-
Oriented Frameworks domain. Its appli cability to other areas will only be limited by the
ability to implement (or drive) an application via a JAVAprogramming interface. (e.g.,
this project was made possible because there was a JAVAIDL compiler; if it did not exist
we would have had to implement in a language with an IDL compiler like C++). We are
looking into other possible applications for this conformance test tool, includ ing testing
of computer file formats used for electro nic circuit descriptions. The tool would analyze
an input file to make sure it was compliant to a given standard. This is analogous to the
numerous H1ML syntax checkers currently in operation. Given the URL of a particular

HTML document (web page), thes e tools access the page, conformance test it to the
HTML standard and report back errors. The one downfall of this H1ML testing method is
the processing load put on the web server, since all scripts are run on the web server.
JAVAwould run on the client machine, thereby greatly minimizing the network load, and
by using the JAVAAWT a much more robust and user friendly GUI could be developed.

5th August, 1997

.... .-

Brady/St.Pierre 11

This project is an ongoing endeavor, with NIST's Electronics and Electrical
Engineering Laboratory (EEEL) continuing to expand the scope and applications of the
test tool to support the electronics industry. Other NIST researchers are also evaluating
the test environment for possible use in their do mains. The tool has functioned well and
can be viewed at the following URL (all source code is also available):

http://megavolt.eeel.nist.gov/CIM.html

From this URL you can control the running of a partial test suite against a prototype
CIM Framework application. The test tool is connected to an ORB on a web server here
at NIST. In addition~the source code is available if you would like to explore the use of
this test environment for your own conformance testing needs. All that is required to run
this demonstration is a WWW browser which includes the NM.

We are expanding the test tool to incorporate the two ORB scheme mentioned above, and
are writing more individual conformance tests. We will be exploring the use of Digital
Signatures to allow an applet to directly connect to a machine other than the web server.
This will lift the restriction that forces th e applet to connect to the !\liST ORB first and
then to the user ORB. In addition we are collaborating with industry to explore further
development an d commercialization of the tool. The NlEL MCITT tool will also be used
to simulate some of the objects we are testing.

5th August, 1997

12 Confonnance Testing Object-Oriented Frameworks Using JAVA

References

All Web references (URL's) were verified for existence in February 1998.

[CIM]
Web reference [http://www.sematech.org/member/divisionlfi/cim/cimhome.htm]

[CIMF] Computer Integrated Manufacturing (CIM) Framework document, Version
2.0,Austin, TX:SEMATECH. .

Web reference [http://www.sematech.org/public/docubase/abstractl1697jeng.l1tm]

[CORBA] Object Management Group, Comnlon Object Request Broker: Architecture
and Specification, Revision 2.1. Framingham, MA: Object Management
Group, 1997.

[JAVA] Web reference [http://www.sun.conllJavaJ]

[MCITT] Web reference [http://www.nzel.nist.gov/msidstaff/flater/nlcitt/index.htnllj

[NIST] James A. St.Pierre, Kevin G. Brady, S.L. Stewart, Conformance Testing and
Specification Management NISTIR 5879 (1996).

[JAVAFACT]
Sandeep Singhal, Binh Nguyen, The Java Factor, Communications of the
ACM June 1998volume 41.

5th August, 1997

