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Beginning with expressions for the vector
potential, the equations for calculating
the magnetic flux density from up to three
rectangular loops of wire in the same
plane are derived. The geometry considered
is the same as that found in some walk-

through metal detectors and electronic arti-
cle surveillance systems. Equations for
more or fewer loops can be determined by
inspection. A computer program for per-
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forming the magnetic field calculation is
provided in an appendix.
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1. Introduction

The expression for the magnetic flux density from a
single rectangular loop of wire of many turns can be
found in text books and various publications [1-3]. The
rectangular geometry is convenient,in part, because the
expressions for the three spatial components of the flux
density are in closed form. Single square coils havebeen
used for calibration of extremely low frequency mag-
netic field meters for applications that require uncertain-
ties of a few percent [2]. Multiple rectangular loops with
a common axis have found applications in a number of
fields, including biologicalexposure systems for in vivo
and in vitro studies [3,4]. It is also noteworthy that a
square Helmholtz coil produces a greater volume of
nearly uniform magnetic field than a circular Helmholtz
coil of comparable dimensions [5]. This paper develops
expressions for the magnetic flux density produced by
three rectangular loops of wire that lie in the sameplane,
i.e., loops that are not co-axial. The geometry is similar
to that used in some walk-through metal detectors and

electronic article surveillance systems. By inspection,
the expressionsfor more or fewer loops are easily deter-
mined. We consider static and time varying fields that
are quasi-static. In the latter case, the wavelength A of
the time varying field is much greater than any dimen-
sion or distance of interest. For example,a 1MHz alter-
nating field (A::::::300 m) is well approximated as being
quasi-static a few meters or less from loops of compara-
ble dimensions. The quasi-static condition allows us to
solve the static field problem first and, with negligible
error, introduce the time dependence as a multiplicative
factor, e.g., the direct currentin the field equationscould
be replaced with an alternating current. The field equa-
tions are for rectangular loops with a single turn of wire.
The magnetic flux density for loops with more than one
turn are found by multiplying the equations by the ap-
propriate number of turns.
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2. Field Equations

We follow the development of Weber [1] by first con-
sidering the vector potential for a rectangular loop of
wire in the x -y plane, Ax and Ay, and then calculating the
vector components of the magnetic flux density using
the relations

Bx= - ~
dZ '

dAx
By= az ' Bz=~ - dAx

dX ay'

For a single rectangular loop of wire of negligible wire
cross section, designated as loop 1,with side dimensions
2al by 2bl as shown in Fig. 1, the components of the
vector potential are [1]

A - JLoIII [(rl + al + x) . (r3 - al + X)
]xl - 4'TT n (rz - al + x) (r4 + al + x) ,

and

A 1= JLOIIln
[

(rz + bl + y) . (r4 - bl + y)
]
, (3)

y 4'TT (r3 - bl + y) (rl + bl + y)

where JLois the magnetic constant (also called the mag-
netic permeability of vacuum), and II is the current in
the loop.

The parameters r., rz, r3, and r4are the distances from
the corners of the loop to the point P(x, y , z) where the
magnetic flux density will be evaluated (see below and
Fig. 1).

z P{X.y.z)

IL2b1-j
X

Fig. 1. Geometry for a single rectangular loop of wire in the x-y
plane. The magnetic flux density is evaluated at point P(x, y, z).

The z -component of the magnetic flux density at
P(x,y,z) is

B - JLolli:[ (-I)ada _ Ca ] (4)
zl- 4'TT a=1 ra[ra+(-I)a+lca] ra[ra+da]'

where

(I)
CI = - C4= al + x
Cz= - C3= al - x

dl = dz = y + bl
d3= d4= Y - bl

rl = V(al + x)z + (y + bl)Z + ZZ

rz =V(al - x)z + (y + bl)Z + ZZ

r3=V(al - x)Z + (y - bl)Z + ZZ

(2)
r4 =V(al + x)Z + (y - bl)Z + zZ.

Equation (4) is equivalent to that given in Ref. [1], but
perhaps in a more convenient form for writing a com-
puter program to calculate the magnetic flux density.

From Eqs. (1) to (3), the expressions for the x- and
y -components of the magnetic flux density can be read-
ily derived and are

_ JLoIr~[ (_I)a+lz ]Bxl - L.J
4'TT a=1 ra [ra + da] ,

(5)

and

JLoII 4 [ (_I)a+lz
]Byl = 4'TT~ ra[ra+ (-I)a+lca] . (6)

The x -component of the vector potential for a second
loop of wire of side dimensions 2az by 2bz that is dis-
placed from the origin by a distance Szand bisected by
the y-axis (see Fig. 2) is given by [1]

.
y

A =JLolz

[

1

;- dZ l=

f
-a2 dZ

]
xZ 4'TT R + R'

1=-a2 l=a 2

(7)

where

R =~)2 + (y - Sz+ bz)Z+ ZZ

R' = V(i"=--z)2 + (y - Sz - bz? + ZZ,

and Iz is the current in loop 2.
The integrals can be solvedusing elementary methods

and yield

558

---



Volume 105, Number 4, July-August 2000

Journal of Research of the National Institute of Standards and Technology

z rJ=Y(a2 - X)2 + (y - b2 - S2)2 + Z2

I.
y

Fig. 2. Geometry for a second rectangular loop of wire in x-y plane.
The point P(x, y, z) coincides with that in Fig. 1 (note that the scales
of Figs. 1 and 2 are not the same).

A =JLo/l I [(ri + a2 + x) . (rJ - a2+ X)
]

x2 4
n

(
'

)(
'

)
'

'IT r2-a2+X r4+a2+X

where ri, r2, r3, and r4are the distances from the corners

of loop 2 to the point P(x ,y ,z) where the magnetic flux
density will be evaluated (see below).

The expression for Ay2 can be similarly determined
and is given by

A =JLO/I I [(r2 + b2 + y - S2) . (r4- b2 + y - S2)

]y2 4'IT n (rJ - b2+ y - S2) (ri + b2+ y - S2) .
(9)

Taking the appropriate derivatives of Eqs. (8) and (9),
the expressionfor the Z-componentof the magnetic flux
density at P(x,y,z) associated with loop 2 is

JLo/2"'~.'[ (-l)ad~ C~
]Bz2= 4'IT~ r~[r~+(_l)a+IC~]-r~(r~+d~)' (10)

where

Ci = - C4= a2 + x
C2= - CJ = a2 - x

~=~=y+~-~
~=~=y-~-~

ri = Y(a2 + X)2 + (y + b2 - S2)2+ Z2

r2=Y(a2 - X)2 + (y + b2 - S2? + Z2

r4=Y(a2 + X)2 + (y - b2 - S2? + z 2.

From Eqs. (1), (8), and (9), the x- and y-components of
the magnetic flux density due to loop 2 are

4

[ ]JLoh (-l)a+lzBx2= -
4'IT~ r~[r~+ d~]

(11)

and

JLo/2 4 [ (-l)a+lz ]By2= 4'IT~ r~[r~+(_l)a+lc~] . (12)

The equations for the flux density components at
P(x,y ,z) from a third rectangular loop with side dimen-
sions 2a3by 2b3,displaced from the origin by a distance
S3and bisected by the y -axis followby inspection. That
is

JLoh 4 [ (-l)ad; C;
]Bz3 = 4'IT~ r;[r; + (_l)a+lc;] - r;[r; + d;] . (13)

where

(8)
Ci' = - C4'=a3 + x
Cz= - C3'= a3 - x

di' = dz = y + b3 - S3

d!f=d4'=y - b3 - S3

ri' = Y(a3 +x? + (y + b3 - S3)2+ Z2

rz=Y(a3 - X)2 + (y + b3 - S3? + Z2

r!f=Y(a3 - X)2 + (y - b3 - S3)2+ Z2

r4'=Y(a3 +x? + (y - b3 - S3)2 + Z2,

and 13is the current in loop 3.
The x - and y -components of the magnetic flux den-

sity due to loop 3 are

JLo/3 4 [ (_l)a+lz

]Bx3= 4'IT~ r;[r; + d;]
(14)

and

JLoh 4 [ (-l)a+lz ]BY3 = 4'IT ~ r;[r; + (_l)a+lc;] . (15)

The spatial components of the magnetic flux density
at P(x,y ,z) due to all three loops (Fig. 3) are found by
summing the respective contributions from each loop,
i.e.,
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Fig. 3. Geometry for three rectangular loops of wire in a vertical

plane. The origin of the coordinate system is at the center of loop 1.

BZT =BzI + Bz2 + Bz3

BxT = Bxl + Bx2 + Bx3

BYT = By! + By2 + BY3. (16)

For direct currents in the loops, the direction of the
magnetic flux density will remain fixed and is de-
scribed by the vector

B = BxTi+ Byrj + BzTk, (17)

where i, j, and k are unit vectors along the x, y, and z
directions, respectively.The magnitude of the magnetic
flux density vector will also be constant and equal to

IBI = VB x} + By} + Bz}. (18)

For alternating currents in the loops that are in phase,
for example I!sin(wt), hsin(wt), and hsin(wt), the

magnetic flux density is described by the vector

B = [BxTi + ByTj + BzTk]sin(wt). (19)

where II, 12,and 13are current amplitudes, w is the
angular frequency,and t is the time. The flux density is
said to be linearly polarized because of its oscillatory
motion along a straight line. The magnitude of the vec-
tor will be time dependent and equal to

IVBx} + By} + Bx} sin(wt)!.

If the alternating currents in the various loops are not
in phase, the magnetic flux density vector will rotate
and the point of the vector will, in general, trace an
ellipse [6].The magnitude and direction of the magnetic
flux density at a given point in space will change as a
function of time. For this case, the flux density is said
to be elliptically polarized.

As a convenienceto the reader, a program for calcu-
lating the static magnetic flux density from three coils
in the x-y plane as shown in Fig. 3 is provided in Ap-
pendix A.

3. AppendixA. Program for Calibrating
the Magnetic Flux Density

The Quick Basic! program below calculates the mag-
netic flux density at a point x, y, z specified in the input
statement for three rectangular loops of single turn wire
with side dimensions 2aI, 2bI, 2a2,2b2,2a3,and 2b3.The
loops are separated by distances S2and S3,and are bi-
sected by the y -axis.The origin of the coordinate system
is at the center of loop 1. Figure 3 shows the geometry
of the three loops and a point P(x, y, z) where the
magnetic flux density is calculated. The program as-
sumes that II =12=h =1A of direct current and that the
current is in the counter clockwise direction as one views

the current looking down on the x-y plane (e.g., see Fig.
1). All dimensions are in meters and the magnetic flux
density will be in units of 10-7 T. For example, with 2aI,
2bI, 2a2, 2b2, 2a3, and 2b3 equal to 1.0 m, 0.5 m, 2.0 m,
1 m, 0.5 m, and 0.3 m, respectively, separated by dis-
tances S2= 1.5 m and S3 =2.5 m, the magnitude of the
magnetic flux density IB Iat x =0.75 m, y =0.75 m, and
z=1 m is 0.95170 X 10-7 T.

I Certain commercial products are identified in this paper to foster

understanding. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology,

nor does it imply that the materials identified are necessarily the best
available for the purpose.
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REM PROGRAM TO CALCULATE a-FIELD FROM THREE RECTANGULARSINGE TURN COILS WITH
REM SIDE DIMENSIONS2Al X 2Bl, 2A2 X 2B2, AND 2A3 X 2B3, AND SEPARATEDBY DISTANCES
REM S2 AND S3, RESPECTIVELY.ALL THREE LOOPS ARE IN THE X-Y PLANE AND THE
REM Y-AXIS BISECTS EACH RECTANGLE;SEE FIG. 3.

DEFDBL A-H, K-Z
CLS
DIM C(4), D(4), P(4), Q(4), T(4), R(4)
DIM CP(4), DP(4), PP(4),QP(4), TP(4), RP(4)
DIM CPP(4), DPP(4), PPP(4), QPP(4), TPP(4), RPP(4)

PRINT "ENTER: AI, Bl, A2, B2, A3, B3, S2, S3, X, Y, Z"
INPUT AI, Bl, A2, B2, A3, B3, S2, S3, X, Y, Z

REM TERMS FOR LOOP 1
C(1) =Al + X
C(2) =Al - X
C(3) =-C(2)
C(4) =-C(1)
D(1) = B1 + Y
D(2) = D(1)
D(3) = Y - B1
D(4) = D(3)
R(1) = SQR(C(1)A2+ D(1)A2+ ZA2)
R(2) =SQR(C(2)A2+ D(1)A2+ ZA2)
R(3) =SQR(C(2)A2+ (B1- Y)A2+ ZA2)
R(4) =SQR(C(I)A2 + (Bl- Y)A2+ ZA2)

REM CORRESPONDINGTERMS FOR LOOP 2
CP(1) =A2 + X
CP(2) =A2 - X
CP(3) o:::-CP(2)
CP(4) =-CP(1)
DP(1) = Y + B2 - S2
DP(2) = DP(1)
DP(3)= Y - B2 - S2
DP(4) = DP(3)
RP(1) = SQR(CP(1)A2+ DP(1)A2+ ZA2)
RP(2) =SQR(CP(2)A2+ DP(1)A2+ ZA2)
RP(3) =SQR(CP(2)A2+ DP(3)A2+ ZA2)
RP(4) =SQR(CP(1)A2+ DP(4)A2+ ZA2)

REM CORRESPONDINGTERMS FOR LOOP 3
CPP(1) =A3 + X
CPP(2) =A3 - X
CPP(3) =-CPP(2)
CPP(4) =-CPP(1)
DPP(1) = Y + B3 - S3
DPP(2) = DPP(1)
DPP(3)= Y - B3 - S3
DPP(4) = DPP(3)

RPP(1) =SQR(CPP(1)A2+ DPP(1)A2+ ZA2)
RPP(2)=SQR(CPP(2)A2+ DPP(1)A2+ ZA2)
RPP(3) =SQR(CPP(2)A2+ DPP(3)A2+ ZA2)
RPP(4) =SQR(CPP(1)A2+ DPP(4)A2+ ZA2)
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REM CALCULATEX COMPONENTOF LOOP 1 (BXl)
FOR J = 1 TO 4
P(J) =(Z*(-l)"(J+l»/((R(J) + D(J»*R(J»
NEXT J
BXl =0
FOR I = 1 TO 4
BXl =BXl + PO)
NEXT I
PRINT "BXFIELDI ="; BXl

REM CALCULATEY COMPONENTOF LOOP 1 (BYl)
FOR J = 1 TO 4
P(J) = (Z*(-l)"(J+l»/((R(J) + ((-l)"(J +l»*C(J»*R(J»
NEXT J
BYI = 0
FOR I =1 TO 4
BYI = BYI + P(I)
NEXT I
PRINT "BYFIELD1 ="; BYI

REM CALCULATEZ COMPONENT OF LOOP 1 (BZl)
FOR J =1 TO 4
P(J) =((-l)"J)*D(J)/(R(J)*(R(J) + ((-l)"(J + l»*C(J»)
Q(J) =-C(J)/(R(J)*(R(J) + D(J»)
T(J) =P(J) + Q(J)
NEXT J
BZl =0
FOR I = 1 TO 4

BZl =BZl + T(I)
NEXT I
PRINT "BZFIELDI ="; BZl
PRINT

REMCORRESPONDINGTERMSFORLOOP2; BEGINWITHX COMPONENTOFLOOP2 (BX2)
FORJ =1 TO 4
PP(J) = (Z*(-l)"(J+l»)/((RP(J) + DP(J»*RP(J»
NEXTJ
BX2 =0
FOR I = 1 TO 4

BX2 =BX2 + PP(I)
NEXTI
PRINT"BXFIELD2="; BX2

REM CALCULATEY COMPONENTOF LOOP 2 (BY2)
FOR J =1 TO 4
PP(J) =(Z*(-l)"(J+l»/((RP(J) + ((-l)"(J +l»*CP(J»*RP(J»
NEXTJ
BY2 =0
FOR I =1 TO 4
BY2 = BY2 + PP(I)
NEXT I
PRINT "BYFIELD2 ="; BY2
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REM CALCULATE Z COMPONENT OF LOOP 2 (BZ2)
FOR J = 1 TO 4

PP(J) = ((-I)"J)*DP(J)/(RP(J)*(RP(J) + ((-I)"(J + I»*CP(J»)
QP(J) =-CP(J)/(RP(J)*(RP(J) + DP(J»)
TP(J) =PP(J) + QP(J)
NEXT J
BZ2 =0
FOR I =1 TO 4
BZ2 =BZ2 + TP(I)
NEXT I
PRINT "BZFIELD2 ="; BZ2
PRINT

REM CORRESPONDINGTERMS FOR LOOP 3; BEGIN WITH X COMPONENTOF LOOP 3 (BX3)
FOR J =1 TO 4

PPP(J) =(Z*(-I)"(J+I»/((RPP(J) + DPP(J»*RPP(J»
NEXT J
BX3 =0
FOR I = 1 TO 4
BX3 =BX3 + PPP(I)
NEXT I
PRINT "BXFlELD3 ="; BX3

REM CALCULATE Y COMPONENT OF LOOP 3 (BY3)
FOR J =1 TO 4

PPP(J) =(Z*(-I)"(J+l»/((RPP(J) + ((-l)"(J +l»*CPP(J»*RPP(J»
NEXT J
BY3 =0
FORI =1 TO 4
BY3 =BY3 + PPP(I)
NEXT I
PRINT "BYFlELD3 ="; BY3

REM CALCULATEZ COMPONENT OF LOOP 3 (BZ3)
FOR J =1 TO 4

PPP(J) =((-I)"J)*DPP(J)/(RPP(J)*(RPP(J) + ((-l)"(J + l»*CPP(J»)
QPP(J) =-CPP(J)/(RPP(J)*(RPP(J) + DPP(J»)
TPP(J) =PPP(J) + QPP(J)
NEXT J
BZ3 =0
FOR I =1 TO 4
BZ3 =BZ3 + TPP(I)
NEXT I
PRINT "BZFIELD3 ="; BZ3
PRINT

REM COMBINE SPATIALCOMPONENTS OF B-FIELD FROM LOOPS 1,2, AND 3
BXT =BXl + BX2 + BX3
BYT =BYI + BY2 + BY3
BZT =BZl + BZ2 + BZ3
REM MAGNITUDE OF B VECTOR
BMAG =SQR(BXT"2 + BYT"2 + BZT"2)
PRINT "BXTOTAL ="; BXT; "BYTOTAL="; BYT; "BZTOTAL ="; BZT
PRINT "MAGNITUDE OF B ="; BMAG
PRINT "X ="; X; "Y ="; Y; "Z ="; Z
END
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