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Abstract. Entangled states are both a crucial component in quantum computers, and
of great interest in their own right, highlighting the inherent nonlocality of quantum
mechanics. As part of the drive toward larger entangled states for quantum computing,
we have engineered the most complex entangled state so far in a collection of four
trapped atomic ions. Notably, we employ a technique that is readily scalable to much
larger numbers of atoms. Limits to the current experiment and plans to circumvent
these limitations are presented.

INTRODUCTION

At the heart of quantum mechanics lies the principle of superposition, where
physical properties of a system can exist in two or more states simultaneously.
When a system is composed of more than one degree of freedom, superpositions
can be prepared where distinct degrees of freedom are perfectly correlated, yet
the state of each degree of freedom is by itself in superposition. The prototypical
example is Bohm’s version [1] of the Einstein-Podolsky-Rosen paradox [2], where a
spin-zero particle decays into a pair of spin-1/2 daughters, resulting in the singlet
state

|ΨEPR〉 =
| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2√

2
. (1)

This state is entangled, since it cannot be expressed as a direct product of states
representing each particle. When one of the subsystems in such a state is measured,
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the other subsystem is also determined, even when the particles are not in physical
contact or outside each other’s light cones. In general, entangled states such as
|ΨEPR〉 highlight the nonlocal character of quantum mechanics. Quantitatively, this
is usually expressed in terms of a violations of Bell’s inequality [3], where measured
correlations between the entangled subsystems can be shown to be incompatible
with what would be expected under conditions of local realism.

Although the correlation in the above state cannot be used for superluminal
communication, it can be harnessed for enhancing communication rates over what
can be obtained classically [4,5]. Furthermore, such states are useful in a variety of
quantum communication schemes such as quantum cryptography [6] and quantum
“teleportation” [7–10].

Entangled states of larger systems are a defining feature of a quantum computer.
Here, for example, a collection of N spin-1/2 particles are prepared in an arbitrary
entangled state of the form

|ΨQC〉 = a0|000 . . . 0〉+ a1|000 . . . 1〉+ . . .+ a2N−1|111 . . . 1〉, (2)

where |0〉 and |1〉 refer to the two spin states of each particle, and the ak are the
amplitudes of the number k being stored by the register of particles. By choosing
appropriate entangled states and performing appropriate state measurements of
the particles, quantum computers can solve certain problems much faster than any
classical computer [11,12]. The reason quantum computers are mere speculation at
this point is that |ΨQC〉 is very difficult to produce in the laboratory.

SCALABLE ENTANGLEMENT WITH TRAPPED IONS

Nearly every demonstration of entanglement to date has relied upon a random or
selection process that prohibits scaling to large numbers of particles. This can be
quantified in terms of the entanglement efficiency parameter ε, or the probability
per unit time that a perfectly entangled pair is created [13]. The probability of
realizing a perfect N-particle entangled state typically scales as εcN , where c is of
order unity and depends on the particular experiment.

The first measured violations of Bell’s inequality were seen in atomic cascade ex-
periments involving the entanglement of a pair of spontaneously emitted photons
[14,15]. Spontaneous parametric downconversion is now a popular source of entan-
gled photons, where typically ultraviolet photons traverse a nonlinear crystal and
downconvert into a pair of polarization-entangled infrared beams [16,17]. Unfortu-
nately, the probability of each input photon being converted leads to an efficiency
ε ' 10−4, so the probability of entangling larger numbers of photons becomes very
small. (Nevertheless, by waiting long enough, three-photon entangled states were
recently observed from simultaneous downconversion into two pairs [18]). Experi-
ments in cavity-QED have recently shown entanglement of two atoms [19] and two
atoms with a photon [20], where atoms from a thermal (random) source traverse
a common microwave cavity. In these experiments, ε ' 0.005. Experiments with



optical parametric oscillators can also entangle the continuous quadratures of two
optical field modes [21]. Although this source has near-unit entanglement efficiency,
scaling to larger numbers of degrees of freedom appears difficult.

The Cirac-Zoller Scheme

In 1995, Cirac and Zoller showed that a collection of trapped ions may be suitable
for storing large-scale entangled states such as |ΨQC〉 [22]. In their proposal, each
atomic ion stores a quantum bit (qubit) of information in a pair of electronic energy
levels, and a collective mode of harmonic vibration is used to entangle any pair of
ion qubits. By applying laser beams to an individual ion in the collection, its
internal qubit state can be mapped onto the collective ion motion, and subsequent
quantum logic gates can be applied between the motion and a second ion, effectively
entangling the two ions. The entanglement can be extended to any number of ions
by repeating these steps on other pairs of ions. When accompanied by single-ion
rotations, the Cirac-Zoller scheme allows the creation of an arbitrary entangled
state [Eq. (2)], and therefore forms a set of universal quantum logic gates.

The basic elements of the Cirac-Zoller scheme were demonstrated on a single
trapped ion in 1995 [23]. A variation of this scheme was later used to entangle a
pair of trapped ions [24] with entanglement efficiency ε ' 0.8, representing the first
scalable entanglement source with near-unit efficiency.

The Mølmer-Sørensen Scheme

Instead of entangling the ions sequentially, Mølmer and Sørensen showed how to
create the N-ion entangled state

|ΨN〉 =
| ↑〉1| ↑〉2...| ↑〉N + eiφN | ↓〉1| ↓〉2...| ↓〉N√

2
(3)

with a single pulse of laser radiation [25]. The Mølmer-Sørensen operation applied
to any pair of qubits in a collection of ions (accompanied by single ion rotations)
allows the creation of any entangled state [Eq. (2)], and thus forms a set of universal
quantum logic gates alternative to the Cirac-Zoller scheme [26]. We have employed
the Mølmer-Sørensen scheme to create the entangled state of Eq. (3) forN = 2 and
N = 4 trapped ions [27]. In both cases, the entanglement efficiency was ε ' 0.8, as
discussed below.

The Mølmer-Sørensen entanglement technique can be understood by considering
a pair of identical spin-1/2 charged particles confined together in a harmonic po-
tential [28]. The energy levels of this system are illustrated in Fig. 1, where h̄ω0 is
the internal energy splitting of each qubit, and ν is the oscillation frequency of a
particular collective mode of the particles in the trap.
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FIGURE 1. Entanglement scheme for two particles. Each ion is prepared initially in the | ↓↓〉
internal state, and the collective motion of the pair contains exactly n quanta. Laser fields equally

illuminating the two ions and oscillating near ω0 + ν + δ and ω0− ν − δ couple the | ↓↓〉 and | ↑↑〉
states as shown. For sufficient detuning δ, the populations of the middle states are kept small. By

driving the double transition for the appropriate period, the entangled state (| ↑↑〉+eiφ2 | ↓↓〉)/
√

2

is generated. For four ions, the same procedure generates the state (| ↑↑↑↑〉+ eiφ4 | ↓↓↓↓〉)/
√

2.

The ions are prepared initially in the | ↓↓〉 internal state, and we assume the
ions are in a collective motional eigenstate |n〉. By simultaneously applying optical
fields near the first upper and lower motional sidebands (oscillating at ω0 + ν + δ
and ω0 − ν − δ respectively) with equal illumination on the two ions, the two-step
transition from | ↓↓〉|n〉 to | ↑↑〉|n〉 is driven through the intermediate states

|Ψint〉± =
| ↓〉| ↑〉|n± 1〉+ eiφ−| ↑〉| ↓〉|n± 1〉√

2
, (4)

where φ− is the phase difference of the field at the two ion positions. For sufficiently
large detuning δ from the sidebands, these intermediate states are negligibly oc-
cupied, so that the motional state is not altered. We also assume δ � ν so that
intermediate states involving other motional modes are not involved in the cou-
pling. As shown in Fig. 1, there are two paths from | ↓↓〉 to | ↑↑〉, and their
respective couplings are given by the product of the two resonant sideband Rabi
frequencies divided by the detuning ±δ from the relevant virtual intermediate level.
For the upper- then lower-sideband path (arrows on left side of Fig. 1), this cou-
pling is (ηg

√
n+ 1)2/δ, and for the lower- then upper-sideband path (arrows on

right side of Fig. 1), it is −(ηg
√
n)2/δ, where g is the single ion resonant carrier

Rabi frequency and η is the Lamb-Dicke parameter of the motional mode involved.
(These expressions are valid only in the Lamb-Dicke limit η2(n+ 1)� 1.) Adding
the couplings from these two paths results in a net Rabi frequency from | ↓↓〉 to
| ↑↑〉 of Ω = η2g2/δ, independent of the motional state |n〉 within the Lamb-Dicke
regime. The net interaction Hamiltonian is proportional to σ(1)

x σ(2)
x , where σ(i)

x is
the transverse Pauli spin-1/2 operator of ion i. Entanglement is achieved by simply
applying these beams for a period τ = π/2Ω, creating the desired spin state



|Ψ2〉 =
| ↑↑〉+ eiφ+| ↓↓〉√

2
, (5)

where φ− is the sum of the field phases at the two ion positions.

1 Fast Entanglement

In order for the intermediate states |Ψint〉± to be negligibly occupied, the de-
tuning δ must be large compared to both single-spin sideband Rabi frequencies
ηg
√
n+ 1 and ηg

√
n, meaning the entangling operation must be much slower than

the resonant sideband operations. (This is the characteristic slowdown of driving
higher-order transitions through virtual levels.) However, it is possible to violate
this condition and still generate the state |Ψ2〉 [29,30]. In this case, the intermediate
states |Ψint〉± are occupied during the operation (and the motional state becomes
entangled with the spins), but this occupation can vanish at exactly the moment at
which the desired entangled spin state |Ψ2〉 is created. Without regard to the the
spin states, we find that for arbitrarily small δ (and within the Lamb-Dicke limit),
the motion evolves during the operation as a coherent superposition of its original
state ρm(0) and an oscillating displaced state [29]

ρdism (t) = D
√Ω

δ
(eiδt − 1)

 ρm(0)D
√Ω

δ
(eiδt − 1)

† , (6)

where D(α) is the displacement operator with phase space argument α [31]. The
overall motion is thus in a “Schrödinger Cat”-type superposition state [32], with

maximum separation in phase space 2
√

Ω/δ. The phase space trajectory of the dis-

placed component ρdism (t) follows a circle from its original state with radius
√

Ω/δ,

returning to the initial motional state ρm(0) at times tm = 2πm/δ, where the pos-
itive integer m is the number of complete circular cycles of the displacement [29].
Setting the entanglement pulse period τ defined above equal to tm, we find that the
condition for a return to the initial motional state following the entanglement step
is Ω/δ = 1/(4m). The entangling peiod can thus be rewritten as τ = π

√
m/(ηg),

which is only a factor of 2
√
m longer than an analogous resonant sideband transi-

tion. To maximize the speed of the Mølmer-Sørensen operation in the experiment,
we operate with m = 1.

2 Scalable Entanglement

Surprisingly, the Mølmer-Sørensen entangling scheme is scalable in the sense that
precisely the same operation can be used to generate the N-particle entangled state
of Eq. (3) for any even number N of ions. (For N odd, |ΨN〉 can be generated
using one entanglement pulse accompanied by a separate independent rotation of



each particle’s spin.) The Mølmer-Sørensen interaction is proportional to J2
x, where

Jx is the transverse spin operator for the effective spin-N/2 particle. Physically,
this interaction simultaneously flips all pairs of ions in the collection. Through the
properties of angular momentum rotations [25], this results in the desired entangled
state |ΨN〉. In scaling to larger numbers of ions, the only difference (for a given
motional mode frequency) is that the operation is

√
N times slower, since the Lamb-

Dicke parameter is proportional to 1/
√
N . In addition, the phase which appears in

Eq. (3) is the sum of the field phases at each ion position.
If the ions are uniformly illuminated, the Mølmer-Sørensen scheme requires that

they all participate equally in the intermediate motional excitation, which implies
that the only suitable mode for arbitrary N is the center-of-mass mode. However,
this mode has a practical disadvantage that fluctuating ambient electric fields cause
it to heat at a significant rate [33]. For large δ, the entanglement operation is
independent of the motion, so that heating is unimportant so long as the ions
remain in the Lamb-Dicke regime [29]. In the small-δ case, however, motional
decoherence of the Schrödinger-Cat state discussed above must be avoided. Modes
involving only relative ion motion couple to higher moments of the field, so heating
of them is negligible [34]. For N = 2 and N = 4 ions, such modes do exist in
which each particle participates with equal amplitude [35]. In both cases, they
are uniform “stretch” modes, in which alternating ions oscillate out of phase; we
use these modes here. Excitation of the center-of-mass mode does still affect the
experiment, as the ion can eventually get heated out of the Lamb-Dicke regime.
For this reason, we initially sideband cool both the center-of-mass and uniform
stretch modes to near their ground state. We note that other modes of motion can
also be used for entanglement, as long as the laser intensity on each ion is adjusted
to compensate for the difference in mode amplitude of that ion, resulting in equal
sideband couplings for all ions.

EXPERIMENT

The experiment was performed using 9Be+ ions confined in a miniature linear RF
trap [33], with the N ions lying in a line along the trap’s weak axis. Two spectrally
resolved ground-state hyperfine levels compose the effective spin-1/2 system, with
| ↓〉 ≡ |F = 2,mF = −2〉, | ↑〉 ≡ |F = 1,mF = −1〉. The hyperfine splitting
between these states is ω0/2π ' 1.25 GHz.

Coherent coupling between | ↓〉 and | ↑〉 is provided via stimulated Raman tran-
sitions. The two Raman laser beams have a wavelength of λ ' 313 nm, with
a difference frequency near ω0. Their wavevectors are perpendicular, with their
difference wavevector lying along the line of ions with magnitude δk = 2π

√
2/λ.

They are detuned ∼80 GHz blue of the 2P1/2 excited state, with intensities giving
g/2π ' 500 kHz.

The Raman beam frequencies can also be tuned to coherently flip the spins while
simultaneously affecting the collective motional state of the ions. For modes con-



sidered here (having equal amplitudes of motion for all the ions), the spin-motional
coupling is determined by the Lamb-Dicke parameter η = δk(h̄/2Nm1ν)1/2 of the
mode with frequency ν, where m1 is the mass of a single particle in the collection.

Fig. 2 displays a stimulated-Raman absorption spectrum of four trapped ions in
a linear array, with the four axial modes as well as higher-order features clearly visi-
ble. For both the two- and four-ion experiments, the desired stretch-mode frequency
was set to ν/2π ' 8.8 MHz, giving a Lamb-Dicke parameter of ηSTR = 0.23/N1/2.
For the Mølmer-Sørensen operation, the two driving frequencies required to gener-
ate a coupling near the first blue- and first red-sidebands are generated by frequency
modulating one of the Raman beams using an electro-optic modulator. The spec-
tral positions of the relevant difference frequencies of the Raman beam pairs are
indicated by the two arrows and dashed vertical lines in Fig. 2.
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FIGURE 2. Raman absorption spectrum of four ions confined in a linear crystal and Doppler

laser-cooled. The ordinate is the detuning δR of the Raman beams’ difference frequency from

the carrier, and the abscissa shows the average counts of ion fluorescence per experiment (200 µs

integration time), proportional to the number of ions in the state | ↓〉 (the ions are initially

prepared in state | ↓↓↓↓〉). The carrier appears at δR = 0, and the first sidebands of the four axial

normal modes of motion (labelled by letters a-d) appear at δR = ±3.62,±6.23, ±8.67 MHz, and

±11.02 MHz, in agreement with the theoretical frequency ratios 1 :
√

3 : 2.410 : 3.051. Several

higher-order sidebands also appear at sums and differences of harmonics of the normal-mode

frequencies, as indicated. The sideband asymmetry (upper sidebands are stronger) indicates

cooling to the quantum regime with only a few thermal phonons. The two arrows and the dashed

lines, just outside the first upper and lower stretch sidebands, indicate the frequencies used for

the four-ion Mølmer-Sørensen scheme.

After an interaction with the stimulated Raman beams, the ions’ internal states
are measured by illuminating them with a circularly polarized laser beam tuned to
the 2S1/2(F = 2,mF = −2) ↔ 2P3/2(F = 3,mF = −3) cycling transition. Each



TABLE 1. Characterization of two-ion and

four-ion states. Pj denotes the probability that j

ions were measured to be in | ↓〉, and |ρ↑...↑,↓...↓| de-

notes the coherence between |↑ . . . ↑〉 and |↓ . . . ↓〉.
Uncertainties in the N = 2 measurements are

±0.01; uncertainties in the N = 4 populations are

±0.02.

N P0 P1 P2 P3 P4 |ρ↑...↑,↓...↓|
2 0.43 0.11 0.46 - - 0.385
4 0.35 0.10 0.10 0.10 0.35 0.215

ion in | ↓〉 fluoresces brightly, leading to the detection of ∼15 photons/ion on a
photomultiplier tube after a 200 µs detection period. In contrast, an ion in | ↑〉
remains nearly dark. For a single ion, we are able to discriminate between | ↑〉 and
| ↓〉 with approximately 99% accuracy, as shown in the histograms of Figs. 3a and
3b. This accuracy is limited by off-resonant optical pumping, which causes the dark
state | ↓〉 to eventually partake in the cycling transition and fluoresce [24]. This
error rate of 1% could be improved considerably by appropriately weighting the
photon counts by their arrival time, as this optical pumping will contaminate later
counts more so than earlier counts. Fig. 3c shows a histogram of four ions prepared
in an initial state with incoherent populations in all five possible states of excitation
without distinguishing the individual ions. Here, the number of ions in state | ↓〉
can be determined with an accuracy of about 80% on any a given experiment,
although this number could be improved to better than 95% by weighting the
counts as discussed above. These statistical detection errors can be averaged away
by repeating the experiment many times and fitting the resulting photon-number
distribution to a sum of Poissonians to determine the probability distribution Pj
of having exactly j ions in the state | ↓〉 [24].

N-particle entanglement results

Following the Mølmer-Sørensen entangling procedure, the probability distribu-
tion Pj is measured. The results are given in Table 1, and show that in both cases,
the probabilities for all N ions to be in the same state are large compared to the
probabilities for the other cases. This is characteristic of the state |ΨN〉 [Eq. (3)],
although the fact that the middle probabilities are nonzero indicates that we do
not generate the entangled states with perfect accuracy.

In order to prove that we are generating a reasonable approximation to |ΨN〉,
it is necessary to prove that the populations of | ↑↑↑↑〉 and | ↓↓↓↓〉 are coherent.
In terms of the N-spin density matrix ρN , we must measure the far off-diagonal
element ρ↑...↑,↓...↓. This can be achieved by viewing the first entanglement pulse as
the first pulse in a Ramsey experiment [36], and applying a second (non-entangling)
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FIGURE 3. Measured probability distribution of detected fluorescence counts of a single

trapped ion in (a) state | ↑〉 and (b) state | ↓〉 after 200 µs of integration (1000 measurements).

(c) Measured probability distribution of detected fluorescence counts of four trapped ions after

400 µs of integration (1000 measurements). The lines are least-squares fits to reference distribu-

tions for having anywhere from 0 ions (leftmost curve) to 4 ions (rightmost curve) in state | ↓〉,
providing relative probabilities Pj of j ions in state | ↓〉.

π/2 pulse to the ions before observing them, closing the Ramsey interferometer.
The relevant observable after this modified Ramsey experiment is the parity of the
number of ions in state | ↓〉 [37]

Π(φ) ≡
N∑
j=0

(−1)jPj(φ). (7)

As the parity is measured while φ is varied, the resulting Ramsey fringes oscillate as
cosNφ for N ions, as seen in Fig. 4. The amplitude of the fringes is just twice the
desired coherence 2|ρ↑...↑,↓...↓|. This compression of the Ramsey fringes by a factor
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in each ion. As φ is varied, the parity of the N ions oscillates as cosNφ, and the amplitude of

the oscillation is twice the magnitude of the density-matrix element ρ↑...↑,↓...↓. Each data point

represents an average of 1000 experiments, corresponding to a total integration time of roughly

10 s for each graph.

of N is the basis for extracting Heisenberg-limited signal-to-noise in spectroscopy of
entangled states, where the frequency uncertainty ∆ω is limited by the N-particle
Heisenberg uncertainty relation ∆ω∆t ≥ 1/N for observation time ∆t [37]. Fig. 5
shows an analog of this effect in a Mach-Zender interferomer.

The measurements of |ρ↑...↑,↓...↓| are listed in the last column of Table 1 for both
2- and 4-ion cases. The fidelity of our state generation, or the overlap between the
idealized state |ΨN〉 in Eq. (3) and the observed density matrix, is

FN ≡ 〈|ΨN〉|ρN |ΨN〉 =
P0 + PN

2
+ |ρ↑...↑,↓...↓|. (8)

For N = 2 we achieve F2 = 0.83±0.01, while for N = 4, F4 = 0.57±0.02. In both
cases the fidelity is above 0.5, indicating N-particle entanglement [27].

Quantifying the amount of entanglement is a more difficult question. A variety
of measures of entanglement have been proposed, but most are difficult to calculate
even numerically [38,39]. For N = 2, Wootters has given an explicit formula for
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FIGURE 5. Mach-Zender interferometer analog for four-particle entanglement observation.

Four photons propagate through a “super-beamsplitter,” which sends the photons in a super-

position of all going through and all reflecting. One arm contains a phase shifter, and the two

paths are recombined on a normal beamsplitter. The parity of the number of photons received in

one of the output ports is measured as the interferometer phase is scanned. Because the photons

all take the same path, the measured phase shift is amplified by a factor of four (fringe period

= π/2), providing enhanced interferometric sensitivity.

the entanglement of formation, E(ρ2) [40]. Although we have not reconstructed
the entire two-particle density matrix, the populations measured place sufficient
bounds on the unmeasured elements to determine that E(ρ2) ≈ 0.5. This indicates
that roughly two pairs of our ions would be required to carry the same quantum
information as a single perfectly entangled pair.

In the four-ion case, no explicit formula for entanglement is known. The data
does indicate that our density matrix can be expressed as

ρ4 ' 0.43|Ψ4〉〈Ψ4|+ 0.57ρincoh4 , (9)

where |Ψ4〉 is the desired state of Eq. (3) and ρincoh4 is completely incoherent (ie.,
diagonal). The coefficients of Eq. (9) are determined directly from the value of
ρ↑↑↑↑,↓↓↓↓ in Table I, together with the fact that no evidence for other off-diagonal
matrix elements was observed. (Other coherences involving less than four ions
would have given fringes varying as cosφ, cos2φ, or cos3φ in the measured popula-
tions Pj(φ) and parity Π(φ)).

A measurement of |ρ↑...↑,↓...↓| > 0 does not by itself guarantee N-particle entan-
glement. For instance, consider the four-particle states

|ΨA〉 =

(
|↓↓↓〉+ |↑↑↑〉√

2

)
⊗
(
| ↓〉+ | ↑〉√

2

)
(10)

and

|ΨB〉 =

(
|↓↓↓〉+ i|↑↑↑〉√

2

)
⊗
(
| ↓〉 − i| ↑〉√

2

)
. (11)



An equally weighted statistical mixture of ΨA and ΨB exhibits only three-particle
entanglement, yet has |ρ↑...↑,↓...↓| = 0.25 (larger than our observed value) without
any other coherences. A similar mixed state with pairs of two-particle entangled
states also has |ρ↑...↑,↓...↓| = 0.25 without other coherences. However, these states
significantly differ from |Ψ4〉〈Ψ4| along the density matrix diagonals, so the observed
populations Pj following the entanglement procedure (Table 1) can set an upper
bound on how much these states can contribute to the measured density matrix. We
decompose ρ4 as a sum of the desired state |Ψ4〉〈Ψ4| and a “worst-case” factorizable
density matrix ρF4 that includes mixed states such as above. We find that an upper
bound on the amount of four-particle coherence in ρF4 is

ρF↑↑↑↑,↓↓↓↓(max) = Min
[
P0, P4,

P2

2
+Min(P1, P3)

]
. (12)

¿From the data in Table (1), we find that ρF↑↑↑↑,↓↓↓↓(max) = 0.15, leaving the
remainder of the observed four-particle coherence (0.065) to be unambiguously
associated with the four-particle entangled state |Ψ4〉. This gives the worst-case
decomposition

ρ4 = 0.13|ψ4〉〈ψ4|+ 0.87ρF4 , (13)

where ρF4 contains mixtures of particular two- and three-particle entangled states
(such as Eqs. (10) and (11)) that are very unlikely to occur in the experiment.

OUTLOOK

The data on two-ion and four-ion entanglement are consistent with an entangle-
ment efficiency of ε ≈ 0.8. Although this represents the only demonstrated source
of 4-particle entanglement and uses a scalable method, the imperfect contrast of
(Fig. 4) indicates that even this efficiency will limit how many particles can be
entangled in this experiment. It may be required to achieve entanglement efficien-
cies ε > 0.9999 in order to implement fault-tolerant error correction schemes which
may allow entanglement of arbitrarily large numbers of particles [41].

Several technical noise sources degrade the observed efficiency, including laser
intensity and beam-pointing noise, nonuniform illumination of the ions during the
Mølmer-Sørensen operation, and magnetic field noise. The chief limitation in the
current experiment appears to be stochastic heating of the ions to outside the
Lamb-Dicke regime. The center-of-mass (CM) motion of the ions is observed to
heat at a rate of 〈ṅCM〉 ≈ 0.02N µs−1 [33], so after a 10 µs four-ion entangling
operation, 〈nCM〉 approaches ≈ 10 thermal quanta. This invalidates the Lamb-
Dicke criterion η2

CM〈nCM〉 � 1, and severely limits the fidelity of the operation.
Mølmer and Sørensen have shown [29] that the expected fidelity of the entangled
state |ΨN〉 of N ions is

F ≈ 1−N(N − 1)η4
CM〈nCM〉2, (14)



to lowest order in the center-of-mass Lamb-Dicke parameter ηCM with N � 1 and
〈nCM〉 � 1. The factor N(N − 1)/2 comes from the number of pairs of N ions
that are simultaneously flipped during the Mølmer-Sørensen entangling operation.
We find that for the N = 4 experiment, the above expression is consistent with the
observations.

The source of ion heating has not been pinpointed, but it appears to be related
to fluctuating microscopic potentials on the electrodes. The observed heating is
not a fundamental limitation, as it has been observed to be orders of magnitude
smaller under some conditions [33]. Moreover, by trapping multiple ion species and
continuously laser-cooling one, the other qubit ions can be sympathetically cooled
to remain in the Lamb-Dicke regime while not disturbing the qubit coherence [42].

Producing entangled states of very large numbers of ions (tens or hundreds) for
relevance to large-scale quantum computing will require a different approach. This
is because a trap confining more than several ions will likely have lower oscillation
frequencies, and mode cross-coupling from the complicated mode structure will be
unavoidable. A promising path to large numbers is to use a multiplexed ion trap
structure of many separated ion traps [43]. Here, entangling operations are done
only in traps holding a few (2 − 5) ions, and the ions are be shuttled between
traps to extend the entanglement to larger numbers. Because the quantum bits are
stored in magnetic dipole (hyperfine) internal states and the ions are moved around
with electric fields acting on their charge, the coherence of the qubits should not be
disturbed. Peeling away an ion from, or introducing an ion to, other ions in a trap
will obviously introduce a significant amount of motional energy, but this energy can
be removed again by trapping multiple species and relying on sympatheic cooling to
return the motion to well inside the Lamb-Dicke regime for subsequent entangling
operations.
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