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Abstract. Small laser-cooled crystals of atomic ions have attracted considerable interest in the last several 
years for their possible application toward quantum computation. This paper considers quantum logic 
schemes for small numbers of ions in the context of recent experiments at NIST. 

I INTRODUCTION 

In its simplest form, a quantum computer is a collection of N two-level quantum systems (quantum bits) 
which can be prepared in an arbitrary entangled quantum state spanning all 2 N  basis states [1,2]. A quantum 
computer, unlike its classical counterpart, can thus store and simultaneously process superpositions of numbers. 
Once a measurement is performed on the quantum computer, the superposition collapses to a single number, 
which in some cases can jointly depend on all of the numbers previously stored. This gives the potential for 
massive parallelism in particular algorithms [3], most notably an efficient factoring algorithm [2,4] and a fast 
searching algorithm [SI. Apart from these and other possible applications 161, creating multi-particle entangled 
states is of great interest in its own right, from the standpoint of quantum measurement theory [7], and for 
improved signal-to-noise ratio in spectroscopy [8,9]. 

Unfortunately, very few physical systems are amenable to the task of quantum computation. This is because 
the quantum bits must (i) interact very weakly with the environment to preserve coherence of their superpo- 
sitions, and (ii) interact very strongly with other quantum bits to facilitate the construction of quantum logic 
gates necessary for computing. In addition to these seemingly conflicting requirements, the quantum bits must 
be able to be controlled and manipulated coherently and be read out with high efficiency. 

In 1995, Cirac and Zoller showed that a collection of trapped and cooled atomic ions can satisfy these 
requirements and form an attractive quantum computer architecture [lo]. In their proposal, each quantum bit 
is derived from a pair of internal energy levels of an individual atomic ion. The quantum bits are coupled to 
one another by virtue of the quantized cotlective motion of the ions in the trap, mediated by the Coulomb 
interaction. Cirac and Zoller showed that an arbitrary entangled state can be created and permit any quantum 
computation by applying several laser pulses, each interacting with a single ion at a time. In light of recent 
experiments at NIST with two ions [11,12], this paper considers alternative quantum logic schemes, where laser 
pulses simultaneously interact with a few ions and their collective motional modes to produce entangled states. 

I1 BACKGROUND 

A Internal Electronic States of Ions as Quantum Bits 

Ions can be confined for days in an ultra-high vacuum with minimal perturbations to their internal atomic 
structure, making particular internal states ideal for representing a quantum bit. Even though the ions interact 
strongly through their mutual Coulomb interaction, the fact that the ions are localized means that the time- 
averaged value of the electric field they experience vanishes; therefore electric field perturbations are small. 
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Although magnetic field perturbations to internal structure are important, the coherence time for superposition 
states of two internal levels can be made very long by operating at fields where the energy separation between 
levels is at an extremum with respect to field. For example, a coherence time exceeding 10 minutes between a 
pair of ’Be+ground state hyperfine levels has been observed (131. It is also possible to employ a ground and 
excited (metastable) electronic state of a trapped ion as a quantum bit. This option seems difficult at present, 
because the energy splittings are typically in the optical region and thus an extremely high laser frequency 
stability is required to  drive coherent transitions. 

Figure l(a) shows a reduced energy level diagram of a single 9Be+ ion. Although many other ion species 
would also be suitable for quantum computation, we will concentrate on ’Be+ here for concreteness and to 
make a connection to  the experiments at NIST [11,12,14,15]. We will be interested primarily in two electronic 
states, the 2S1/2(F = 2,mp = 2) and 2S1/2(F = 1 , m ~  = 1) hyperfine ground states (denoted by I 1) and 
I T) respectively), separated in energy by L o .  These long-lived spin states will form the basis for a quantum 
bit. Standard optical pumping techniques allow the spin to be initialized into either 1 1) or I r). Subsequent 
detection of the spin states can be accomplished using the technique of quantum jumps [16). By tuning 
a circularly polarized laser beam to the 2P3/2 transition at X B ~  = 313 nm (Fig. l(a)), many photons are 
scattered if the atom is in the I 1) spin state (a “cycling” transition), but essentially no photons are scattered 
if the atom is in the I T) spin state. If a modest number of these photons are detected, the efficiency of our 
ability to discriminate between these two states approaches 100%. 

2P3J3,3) 

Detection 

- 
I t> 

FIGURE 1. (a) Electronic (internal) energy levels (not to d e )  of a ’Be+ ion. The 2S1,2(F = 2,mp = 2) and 
2S1/2(F = 1,mF = 1) hyperfine ground states (denoted by I 1) and I 1) respectively), separated in frequency by 
w0/2?r N 1.250 GHz, form the basis of a quantum bit. Detection of the internal state is accomplished by illuminating 
the ion with a u+-polarized “detectionn beam near N 313 nm, which drives the cycling I 1) + 2P3p(F = 3,  mF = 3) 
transition, and observing the scattered fluorescence. The excited P state has radiative linewidth y/2n N 19.4 MHz. (b) 
Energy levels of a trapped ’Be+ ion, including the motional states of a single mode m of harmonic motion, depicted by 
ladders of vibrational states separated in frequency by the mode frequency wm. Two Raman beams, both detuned by 
A >> WO,W,,, from the excited 2P1,2 state, provide a coherent two-photon coupling between states I 1)lnm) and I t)ln&) 
by setting the difference frequency W L  to match the desired transition frequency. As shown, the Raman beams are tuned 
to the first red sideband of mode m ( w ~  = wo - wm). 

B Collective Motional States of a Linear Crystal 

Ions can be confined in several types of electromagnetic traps. Here, we consider the rf (Paul) ion trap, in 
which an oscillating electric potential is applied to electrodes surrounding the ions. In the standard quadrupole- 
like rf trap, the potential varies in space and time as 
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where dT characterizes the trap electrode dimension and 0 < CY I 1/2 characterizes the geometrical anisotropy 
of the trap electrodes (a = 112 corresponds to a quadrupolar potential). This gives rise to harmonic pondero- 
motive potentials (171 in all three dimensions with oscillation frequencies 

wz = - aa+ - OT 2 P T  
(1 - a)2q2 

wy  = 2 OT si (1 - a)a + 
wz = - 2 

where a = 8eUo/(mR$d$) and q = 4eVo/(mO$d2 ) and e /M is the charge-to-mass ratio of the ion. In these 
expressions, it is assumed that --crq2/2 < a < q / 2  and 9 e 1 (or equivalently w , , ~ , ~  !&-)-a condition 
known as the “pseudopotential approximation” [17]. Motion described by an rf pseudopotential is always 
accompanied by micromotion at  frequencies near OT associated with the rf electric fields. An alternative 
geometry is the linear trap [18], in which a 2D pseudopotential confines ions radially and an independently 
applied static potential confines the ions axially. Because the rf fields vanish along the axial node, there is no 
axial micromotion, and many of the problems associated with micromotion are avoided. For this reason, the 
linear rf trap is more appropriate when larger numbers of ions are confined and micromotion is not desired. 

For a collection of trapped ions, the mutual Coulomb repulsion counteracts the confining potential, and 
if the ions are sufficiently cold, they will crystalize to an equilibrium configuration. In this case, the three 
frequencies in Eq. (2) describe center-of-” (COM) harmonic motion, and a normal mode calculation must 
be done to solve for the other internal modes of harmonic motion. The simplest crystalline structure is a linear 
chain, which can be attained with a sufficiently anisotropic trap. Here, we will take the x-axis in the above 
expressions to represent the weakest (axial) direction of the trap, which can be ensured by setting a < 0 and 

< 112. For N = 2 ions, the ions will clearly arrange themselves along the z-axis of the trap. For N=3 ions, 
the ions will form a linear chain along x only if wz < f l  w ~ , ~ .  For larger numbers of ions, this anisotropy 
must be even larger, and has been numerically calculated in Ref [19]. 

Of the 3N normal modes of small oscillation in a linear chain of ions, we are primarily interested in the N 
collective modes associated with axial motion (assumed to be along the z-direction in the above equations). 
A remarkable feature of a linear chain of ions is that the axial mode frequencies are nearly independent of 

5 

8 s 
u) 

3 
ii 

I 1 I 
I I 

6 - 5 - 4 - 3 - 2 - 1 0  1 2  3 4  5 6  

Raman detuning 6 (MHz) 

FIGURE 2. b a n  absorption spectrum of three trapped ions. The ordinate is the detuning 6 of the b a n  probe 
beam difference frequency and the abscissa shows the ion fluorescence, proportional to the number of ions in the state 
1 1) (the ions are initially prepared in state I 1)1 1)1 I)). The carrier appears at 6 = 0, and the first sidebands of the 
three axial normal modes of motion appear at 6 = f2.25,*3.90, and f5.43 MHz, in agreement with the theoretical 
frequency ratios 1 : 4 : m. Several higher order sidebands also appear at sums and differences of harmonics of 
the normal mode frequencies. 
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N [10,20,21], offering the possibility that mode interference might be small, even for large numbers of ions. 
For two ions, the axial normal mode frequencies are wz and &,; for three ions they are w , , d  w,, and 
J%@ w,, as shown in Fig. 2. For N > 3 ions, the normal modes must be determined numerically [20,21]. 
The quantum state of a particular axial mode m of motion at frequency w, is represented by the ladder of 
vibrational eigenstates In,) of energy hwm(nm + 1/2) with vibrational index nm describing the number of 
phonons contained in the the mth collective mode of motion. The motional modes can be initialized to the 
nm = 0 ground state through laser-cooling [11,14]. Whenever possible, operations involving the COM modes 
should be avoided, as the COM modes are found to lose coherence (through external heating) at an anomolously 
high rate [14,22] compared to the non-COM modes [ l l ] .  

C Interaction between Internal and Motional States 

We now describe the coupling between the internal electronic levels and the collective axial motion of the 
ions when a classical radiation field is applied. If the internal levels I 1); and 1 r); of the ith ion in a string are 
coupled by a dipole moment operator pi (other couplings can be shown to behave analogously), then exposing 
the ions to traveling-wave electric fields Ei(r)  = E;cos(k. T - wLt + 4 ~ )  with frequency W L ,  phase 4 ~ ,  and 
wavevector k results in the interaction Hamiltonian [22] 

under the rotating wave approximation (161, g << W O ) .  In this expression, g ,  = -(t Ipil 1).&/4fi is the resonant 
Rabi frequency connecting I 1); to 1 r), in the absence of confinement, S$ are the internal level raising and 
lowering operators for the ith ion, 6 = W L  - wo is the detuning of the radiation from atomic resonance, and k, 
and X ;  = ri + f are the axial components of the wavevector and position operator of the ith ion, respectively. 

In practice, driving direct transitions between In,)[ 1); and [&)I  r); with rf or microwave radiation is not 
feasible, because the coupling between internal and motional states is proportional to powers of k, from Eq. 
(3) and would thus be extremely small due to the long wavelength of the radiation. Alternatively, optical 
fields can be used to drive two-photon stimulated Raman transitions [14]. As depicted in Fig. l(b), two laser 
beams detuned by A from an excited state of radiative width 7 are applied to the j t h  ion with their difference 
frequency matched to the desired transition frequency. For sufficient detuning !AI >> y, the excited state may 
be adiabatically eliminated, and the above coupling of Eq. ( 3 )  applies, with g ,  replaced by g,lg,2/h, where g;l 
and g;2 are the individual Rabi frequencies of the two beams when resonantly coupled to the excited level of 
ion i. In addition, W L  ( 4 ~ )  is replaced by the difference frequency (phase) of the beams, and IC is replaced by 
the difference in wavevectors of the two Raman beams kl - k2. Since the relevant frequency depends only on 
the microwave difference between the two laser frequencies, both beams can be generated with a single laser 
source and a modulator, thereby relaxing the constraints of laser frequency stabilization. 

Each ion in a linear array will be displaced from the axial center of the trap due to the other ions by an 
amount xi = eF,/Mw$ where F, is the static axial electric field at the i th ion due to the distribution of 
charges of the other ions in addition to any externally applied uniform axial field. (The force eF; is of course 
balanced by the confining force of the trap.) If the ions are not confined in a linear trap, this displacement will 
cause each ion to undergo micromotion at the rf drive frequency RT. In the pseudopotential approximation, 
the axial position operator of the i th ion takes the form [17] 

x i  = 3; + 5, + (;ms(RTt). (4) 

In Eq. (4), the position of ion i is broken into three parts: a static offset term X; which can be combined with 
4~ in Ea. (3) to give an overall phase 4, = 4~ + k& at ion i, a quantum operator 2, associated with small 
harmonic oscillations about the ion’s equilibrium position at the normal mode frequencies, and a classical 
micromotion oscillation at RT with amplitude (, = &q/2 = eaqF;/2MwE. A classical treatment of the 
micromotion is justified because even for unreasonabl small fields F;, the classical amplitude of micromotion 
is much greater than the zero-point motion ((, >> /-). The quantum effects of micromotion typically 
amount to small corrections to the the treatment here [23]. 

The quantum portion 2; of the position can be expressed in terms of the N axial harmonic oscillator normal 
mode raising and lowering operators 6: and i i k :  
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In this expression, 0: is the normal mode transformation matrix which relates the ith ion’s physical coordinate 
to the kth collective normal mode coordinate with zero-point characteristic size qk,O = d m .  

When Eqs. (4) and (5) are substituted into the interaction Hamiltonian of Eq. (3), resonances (time 
independent interaction terms) occur when the detuning is set to sums of harmonics of all normal mode 
frequencies wk and rf drive frequency RT 

N 

k = l  

where ni l  nk, and e are integers. The resulting Hamiltonian matrix element which couples the quantum states 
I J)i l{n})  and I t) i l{n’})  ( { n }  = n1,. . . , n ~  and {n’} = n;, . . . ,nX) is 

(7) ) 
N N 

i=l ” ( k = l  

xf’ = h x g i e i ( “ / 2  Je(k r . )  g+,idi n eiVi,k(Bk+B:) + h.c. , 

where vi,& = k,D:qk,o is the Lamb-Dicke parameter of the ith ion associated with the kth normal mode, and 
Jc(z) is the Lth Bessel function. 

Typically, not all of the motional modes are altered upon application of this interaction, and we will treat 
two special cases: 
( i)  Carrier Interaction. When the radiation is tuned to the carrier, defined by {n’} = { n }  in Eq. (6), 
no motional states are altered and there is no entanglement between internal and motional states. Each ion 
independently evolves between states I l ) i l {n } )  and I l)il{n}) with coupling 

(ai) Single-mode Interaction. Here, the radiation is tuned to 6 = (nk - nm)wm + e!& so that only mode 
m is altered. This interaction is also called the “nk - n, motional sideband” on mode m and takes the form 

More-complicated multimode expressions can be similarly derived, allowing the engineering of a large class of 
interactions by simply tuning the radiation [22]. 

The factors which appear in Eqs. (8) and (9) are 

R,k(nk) = (nk )eiqi.k(hk+h:) Ink) = e-q?,k/2&k (&), (10) 

describing the effect of motion in spectator motional mode k containing nk quanta 1221, where C,(z) is the nth 
Laguerre polynomial. Both R,k(nk) and Jc(k,<,) factors are I 1 and can be interpreted as a suppression in 
the laser-ion interaction from the smearing-out of the ion’s wavefunction due to spectator normal mode motion 
and micromotion, respectively. (These factors are known as DebyeWaller factors in many condensed-matter 
systems [24].) 

The central ingredient in the singlemode coupling 7fy is the coupling of the ith ion’s internal states (operated 
by Pi) to the mth normal mode (operated by 8, and h i )  which can allow entangled states to be created. 
In general, this interaction couples all 2N internal levels of the N ions in addition to many energy levels of 
the mth mode of motion. The Schrodinger equation must therefore be intergrated numerically to evaluate the 
amplitudes of all these energy levels. However, there are special cases which significantly simplify this coupling 
and can be used for quantum logic. 
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1 Individual Addressing of Ions by Focussing 

In the Cirac-Zoller scheme for quantum logic, the interaction of Eq. (7) is sequentially applied to different 
ions in the string by focussing laser radiation on the individual ions. For example, if ion j is selected, g, = & j g  
and the sum in &. (7) collapses to a single term, resulting in a coupling between the two quantum states 
I l ) j l {n} )  and I T)jl{n')) with matrix element 

where nk> (nk<) is the greater (lesser) of n; and nk, and L,"(z) is a generalized Laguerre polynomial. 
We will be interested primarily in three types of transitions on ion j involving one mode m of motion, selected 

by the detuning 6: the carrier, the -1 or "first red" sideband of mode m, and the +1 or "first blue" sideband 
of mode m with Rabi frequencies 

( W  
LAm ($,,I 
dm 0+1 = g j  J t (kz<j )  n Rj,k(nk) e-qj*m/2qj,m g j  J t ( k z < j ) ~ j , m & Z - i ,  

k=1 

( k i w  

where the approximations in Eqs. (12b) and (12c) hold in the Lamb-Dicke regime (v,,~,/G << 1). The carrier 
transition, independent of nm, simply rotates the internal level of ion j and can be used to initialize the quantum 
bit into the state (ajl l)j + pjl 1)j)l with Crj and pj  arbitrary complex numbers satisfying IajI2 + 1/3jI2 = 1. 
The first red sideband interaction is the central ingredient of the Cirac-Zoller scheme. If motional mode m is 
initially prepared in the n, = 0 zero-point level, then by applying radiation to the j t h  ion on the first red 
sideband for a time T = 7r/2f12_1 (a ?r pulse), the state (a,[ 1)j + 1) j ) lO)  is mapped to 1 1)j(cw,lO) + Pjll)); 
that is, the quantum bit initially stored in the j t h  ion is mapped onto the first two states of motion of mode 
m. This information is shared among all ions which have nonzero qj,m and can be subsequently mapped onto 
another ion j' to produce a.n arbitrary entangled state between ions j and j'. The operations of Eq. (12) have 
been realized on a single trapped gBe+ion [14,15]. 

2 Uniform Coupling 

Here, we assume that each ion receives the same coupling from the radiation, or that each term in the sum 
of Eq. (7) is independent of i, outside of phase factors. This can occur when the applied radiation uniformly 
illuminates all of the trapped ions (9, = 9). Furthermore, we require that (i) k,E, is independent of i, which 
holds in a linear trap (<; = 0) or in the case of copropagating Raman beams ( k ,  = 0), and (ii) transitions are 
driven on the carrier or a uniform mode of motion u where the Lamb-Dicke parameter q,,,, = q,, is independent 
of i and the other (nonuniform) modes are in the Lamb-Dicke regime so that &,k N 1. Examples of uniform 
motional modes are the COM mode where q;,- = qCm = k z J m  or the stretch mode for N = 2 
ions). For transitions on the carrier, 

' K : u = h g ( J + + J - ) ,  (13) 

and for transitions involving a uniform mode m,, 

In these expressions, J* E ELl S&e*a+i are generalized angular momentum raising and lowering operators 
formed by combining the N spin-1/2 ions into an equivalent spin -J = N/2 system [8]. If the system is 
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initially in the state I 1 ) 1 1  1)z . . - I  1 ) ~  = l J , m ~  = - J ) ,  then evolution is confined to the 2 5  + 1 = N + 1 
coupled eigenstates IJ, m ~ )  with matrix elements ( J ,  mJ f lIJ*IJ, m ~ )  = ,/J(J + 1) - m ~ ( m ~  f 1). (Unlike 
the usual angular momentum eigenstates, when these states are decomposed to the uncoupled states, there are 
generally different phase factors in front of each uncoupled state.) In these special cases of uniform couplings, 
evolution of the quantum state of the N ions is simplified because it is restricted to the subspaces spanned 
by the 2 m ~  + 1 5 N + 1 states of the equivalent spin J = N / 2  system instead of the complete Hilbert space 
containing 2 N  states. 

3 General Treatment of N=2 Ions 

For the case of two ions, there are two axial modes of motion: the COM mode at wcom = w,  and the 
stretch (STR) mode where the ions move with opposite phase at wstr = &w,. The static fields at the two 
ion positions (balanced by the trapping fields) are F1,2 = ~ e / 4 7 r e o s ~  + Fe,t, where s = Ve2/(27re0mw2) is the 
spatial separation between the two ions. We can rewrite the general interaction of Eq. (7) for two ions: 

I11 QUANTUM LOGIC WITH A FEW IONS 

A Two Ions 

At NIST, we have laser-cooled both axial modes of two gBe+ions to the ground state of motion in a trap 
with w,/27~ N 10 MHz [ll]. The spacing between the ions is only s N 2pm in such a strong trap, so it is not 
trivial to focus laser beams to individually address the two ions for quantum logic following Section I1 C 1. We 
therefore consider alternate schemes in which both ions are equally illuminated (91 = 9 2 ) .  

1 Diflerential Addressing with Micromotion 

It is still possible to differentially address the two ions by tuning the argument of the Bessel functions in 
Q. (15) through the externally applied axial field Fezt. The micromotion amplitudes of the two ions are 

so the corresponding carrier Rabi frequencies on the two ions can be set to any ratio R l / R z  = Jc(k , t l ) /J t (k ,<z) .  
In Fig. 3(a), we have measured the Rabi frequexicies of the two ions with C = 0 while varying the externally 
applied field Fezt, showing excellent agreement with theory [12]. 

In particular, by setting Fezt 60 that R1/Rz = 2 {vertical arrow in Fig. 3(a)) and initializing the ions in state 
I 1)1 L) lOat r ) ,  we can create the state I 1)1 T)lO.,tr) by driving on the carrier for a time T = n/R1 (vertical arrow 
in Fig. 3(b)). To make an EPR entangled state [25], we can then switch Fezt so that sZl/Oz = 1 + fi and apply 
radiation tuned to 6 = -Watr and drive on the STR red-sideband which couples I 1) I t) IOstr) , I 1) I 1) I ls tr) ,  and 
I t)l l ) l O s t r ) .  This three-level system can be solved exactly, and we find that the state evolves to a maximally 
entangled EPR state 

with the phase controlled by the spacing s of the two ions. In Ref. (121, Fezt was fixed for a 2:l ratio of Rabi 
frequencies throughout the experiment, which created a similar but slightly less entangled version as Eq. (17). 
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FIGURE 3. (a) Normalized carrier Rabi frequencies of each of two ions as a function of the mean position of the two 
ions d = (XI + X 2 ) / 2  = e F c z t / w ~ , ,  set by externally applied uniform field Fc,t. The solid curves are theoretical 
Bessel functions Jo(k,&) and J0(kz&), where is from J3q. (16). (b) Number of ions in state I 1) as a function of the 
time the carrier is applied, clearly showing two frequency components with Cll/Rz = 2. the arrow in (a) indicates the 
setting of d for (b). 

This technique of tuning each ion’s Rabi frequency based on unequal micromotion amplitudes can also be 
extended to give individual addressing of the ions as in Section I1 C 1 but without using focussed beams. Here, 
we set the trap strength and external electric field Fezt such that kz<l = 0 and kzE2 = 2.405. (In the NIST 
gBe+experiments where k ,  = (k2 - kl) f = 4(27r/Ae,) and R~/27r N 240 MHz, this condition is met 
when the axial COM frequency is set to wz/27r II 3.80 MHz with UO o( a = 0 and the external field is set to 
Fezt = 1.01 V/cm.) When ion 1 is to be isolated, the radiation is tuned so that t = 0 in Eq. (6), thus shutting 
off the coupling to ion 2 since Jo(2.405) = 0. When ion 2 is to be isolated, the radiation is tuned so that 
It1 = 1, thus shutting off the coupling to ion 1 since Jl(0) = 0. 

2 EPR State without Micromotion 

We describe an alternate scheme for making EPR states where each ion is equally illuminated by the radiation 
and has the same coupling to the radiation field (in the case of a linear trap or for Fezt = 0 in Eq. (16) giving 

= 1521). Here we can describe the system in terms of an equivalent angular momentum J = 1 system 
described by quantum numbers IJ, m ~ )  and the stretch motional state Instr). If the two ions are initialized in 
the state I 1)1 1)IOstr) = l l l - l )~Os~r)9  then we find from Eqs. (11) and (14) that, if we tune to the first blue 
sideband of the stretch mode (6 = Wstr) ,  the couplings are 

(1,0l(1strlxHNlostr) I 1, -1) = f i g ~ ~ o m ( n ~ ~ ) e - 9 1 ~ r ’ ~ 7 7 s t ~ ~  (184 

(18b) (1,11(2str1~~~11str)11,0> = f i g ~ ~ o m ( n c o m ) e - 9 ~ ’ ” ~ 7 7 s t ~ ( 2  - q2 str ) I 

where Rcom(nm) = 7Ei,com(nc,) = 7Z2,-(ncom). Now if the trap strength is set so that qs tr  = 4, the 
second coupling (Eq. (18b)) vanishes. The first coupling (Eq. (18a)) can then be driven for a time such that 
11, -1)lOstr) evolves directly to the EPR entangled state 11,O)Ilstr) = (e*$1( 1)l f )  + eida( f)l l))llst,.)/&. 

B Three Ions 

For N = 3 ions, we are interested in producing the maximally entangled (“GHZ”) state [26]: 

Such states are of great interest to the measurement of quantum nonlocality and can be employed for rudimen- 
tary quantum error correction codes [27]. This state can be produced using the general Cirac-Zoller scheme; 
here we discuss two schemes for generating (or approximating) Eq. (19) without individual addressing of ions. 
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1 Approximate GHZ State without Micromotion 

We assume that the three ions are equally illuminated by the radiation fields (9, = g ) ,  undergo no micromo- 
tion, and are initialized in the state I 1)1 1)1 ~)~Oatr)~Oeg). Here, 1natr) refers to the stretch mode at frequency 
fi wz wherein the middle ion is at rest, and lneg) refers to the "Egyptian" (281 motional mode at frequency 
weg = fl w, wherein the middle ion 2 moves out of phase and with twice the amplitude as the outer ions 
1 and 3. We sequentially apply three pulses of radiation to the ions: 
(1) The radiation is tuned to the 2nd blue sideband of the Egyptian mode (nig = neg + 2 from Eq. (11)). 
This coupling, proportional to $eg,is 4 times larger on the middle ion than on either outer ion. We therefore 
approximate that only the middle ion is affected. By applying this radiation for an approximate a/2 pulse 
duration, we create a superposition of the original state with I 1)1 T)l J.)IOstr)12eg). 
(2) The motion in the Egyptian mode is swapped with the motion in the stretch mode. This can be accom- 
plished by tuning the radiation so that WL = weg - wstr. In this case, a different rotating-wave approximation 
is performed in Section I1 C, and Eq. (3) is reproduced without the internal S i  operators. The three motional 
states IOstt)l2eg), Ilatr)lleg), and 12str)IOeg) are coupled without affecting the internal states of the ions, allow- 
ing IOstr)12eg) to evolve to 12atr)lOeg) through the intermediate 11str)lleg) state for r]+tr, 
(3) The radiation is tuned to the first red sideband of the stretch mode. This operation does not affect the 
middle ion (v2,#tr = 0) and largely removes the two quanta in the stretch mode while simultaneously flipping 
the outer two internal states. The three steps roughly give the evolution (ignoring phase factors): 

<< 1. 

The actual amplitudes of the states must be solved numerically due to imperfections in the first and third 
steps. As a consequence, instead of a perfect GHZ state, this scheme generates the state I ~ M I K K L M T W W )  
with a fidelity I(QMIKKLMTWWI\ECHZ)~~ N 86%. 

2 Exact GHZ State with Micromotion 

Here, the ions are again equally illuminated, but the three ions have different couplings to the radiation 
due to different amounts of micromotion in each ion. In particular, we set axial trap strength and external 
field such that kzE1,3 = 2.405 and kZ& = 0. This allows the middle ion 2 to be individually addressed for 
t = 0 (since Jo(2.405) = 0), and outer ions 1 and 3 to be equally addressed for t = 1 (since Jl(0) = 0). (In 
the NIST gBe+experiments, following the parameters of section I11 A 1, this condition is met when the axial 
COM frequency is set to w,/27r N 6.08 MHz with Vo oc a = 0 and the external field is set to  Fest = 0.) We 
sequentially apply two pulses of radiation to the ions, initially prepared in the state I 1)1 1)1 l ) lOm):  
(1) A 7r/Zpulse is driven on the first blue sideband of motional mode m with t = 0, affecting only the middle 
ion: 

(2) A pulse is driven on the first red sideband of mode m with t = 1, affecting the outer two ions identically. 
If we set the Lamb-Dicke parameter to qm,l = t7m,3 = d a ,  we find that the twu-ion couplings similar to 
Ekl. (18) are identical, and after a particular time the state evolves to the GHZ state 

Since all axial trap frequencies (proportional to w,) are constrained by the micromotion requirements above, 
one of the nonaxial modes must be used for mode m. Since the Lamb-Dicke parameter is large, this mode 
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should be very weakly bound. For three ions, there are two “zig-zag” modes in which all three ions move along 
y or z, with the middle out of phase with the outer two ions. The oscillation frequency of the 
z zig-zag mode is w,,, which can be made arbitrarily small while keeping all 8 other modes 
at relatively high frequencies. For our NIST gBe+experiments, we find that 71,,,, = 73,222 = d m  implies 
a zig-zag frequency of w,,,/2n N 64 kHz. 

IV OUTLOOK 

A scalable scheme for universal quantum logic with trapped ions is the method Cirac and Zoller proposed in 
which the individual ions in a string are individually addressed with laser radiation (Section I1 C 1). However, 
there are many degrees of freedom of up to 3 ions which can allow quantum logic gates and entangled states 
to be created without individual addressing. Although these schemes do not appear scalable within a single 
collection of ions, they may prove useful for doing quantum logic on nodes of a few ions which could then be 
coupled to other nodes of ions with cavity-QED techniques [29,30] or ion accumulators in which an individual 
ion is physically moved to a nearby separate collection of ions [22]. 

Work of the U.S. government; not subject to copyright. We gratefully acknowledge support from the National 
Security Agency, Office of Naval Research, and Army Research Office. We thank Matt Young for critical 
comments regarding the manuscript. 
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