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1. Abstract

1 explain the difference between the Total variance
and the Allan variance and what is gained for esti-
mating frequency stability especially at long term.
1 also describe the property that adding up Total
variance values in the usual “power-of-2” increments
vields twice the sample standard variance.

2. Introduction and Summary

Total variance uses all of the available time-
difference data {z,} like the standard variance in a
data run of duration T (or length N, of sample z,,-
values), but unlike the Allan variance which uses only
three (first, median, and last values). I describe a
model of the Allan variance as a measure of asymme-
try of first and last points with respect to the median
by the misalignment of this triplet over 7. The con-
cept of Total variance involves scanning the entire
interval for all such asymmetries about the median
value and averaging them. We still obtain a con-
vergent T-domain variance for all typical oscillator
FM power-law noise types (white denoted as WHFM,
flicker as FLFM, and random-walk as RWFM). Re-
markably, however, the equivalent degrees of freedom
(or edf) shows an increase from 1 to 1.5, 2.1, and 3 in
the presence of RWFM, FLFM, and WHFM respec-
tively for computations at 7 = T'/2 thus supporting
the basic model criteria. Because of its efficient use
of available data, Total variance is recommended for
long-term measurements of frequency stability [1]. A
particularly simple and recommended computation
of frequency stability dubbed “Totvar” has demon-
strated improved estimation of frequency stability at
long-term 7-values while essentially computing the
usual max-overlap sample Allan variance at short-
and mid-term 7-values.

3. Measuring Frequency Stability

If the time or the time fluctuations between two
oscillators can be measured directly, an advantage is
obtained over just measuring frequency fluctuations.
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The reason is that we can readily see time behavior
from actual measurements, and frequency can easily
be inferred from time. To avoid measurement-system
dead time and simultaneously measure the underly-
ing frequency stability of the best oscillators often
nearly at the same frequency, we use the dual mixer
time difference (DTMD) scheme [2]. Measurement
samples of time fluctuations occur at a rate fs hav-
ing an interval 75 = ?1: Given a sequence of time
deviates {z, : n =1,...,N;} with a sampling period
between adjacent observations given by 7y, we define
the mrp-average fractional frequency deviate as

— — -1
yn(m) = r_}'; z;r;o Yn—3>

where yn = = (zn — Zn—1) and we regard {F,(m) :
n=m,..., _E} as a finite realization of a stochas-
tic process {Yn(m) : n = 0,£1,%2,...}. Allan in
ref. [3] devised a characterization of frequency stabil-
ity based on an ensemble average of a 2-sample stan-
dard deviation. The Allan variance is defined as [4]

62(m) = 5B { Fasm(m) ~Fn(m)]’},

and E {[Fnym(m) —Fn(m)]} = Dr(m),

where F throughout this paper means an expected
average or infinite mean, and Dr(m) is a linear trend
and assumed to be linear frequency drift which is usu-
ally estimated and removed. If the first difference
{¥,(1) = ¥,—1(1)} is stationary, then the stochastic
process is such that the expectations above depend
on the averaging time index m but not on the time
index n. Note that each point estimate of the Allan
variance computed at m requires a 2m interval. A
hat “*” denotes a sample estimate of the function.

The usual max-overlap sample Allan variance
&5(7’, T) involves averaging time 7 = m7y and sample
data run T. Called Avar, it is given by [2,5]

&3(7‘, T) = Avar (m, 19, Nz ) =

N, - —_ — 2
Ty Zomim” Fnam (M) = Ta(m)” = (1)
N;.~m

1 2
2(m70)2 (N, —2m) (I'n+m - 21:11 + zn—m) ’ (2)
n=m+1



for 1 < m < #z=L. Known as a central difference,

summand terms in (2} involve a second difference
of {z,} expressed symmetrically over a 2mmy span.

Each central difference consists of only a first, middle,.

and last z,, value, or r,’s taken in triplet, then subse-
quently squared and averaged. Having removed drift
and other deterministic error sources, an oscillator’s
random FM noise will have triplets which on average
fall on a straight line. Thus, any particular triplet is
more likely to fall nearly on a straight line, hence the
central difference is often uncharacteristically low as
judged by the rest of the z, values in the 2m7g inter-
val.

4. Motivating Concept of Total Variance

Total variance [6-10], denoted as o2,,,,(7, T), has
been developed to exploit the time fluctuations in and
around Avar’s forementioned triplets on the belief
that we are at liberty to choose a range of neighboring
quantities which can serve as proper surrogates and
average them to obtain a better estimator &Z(T, 7).
These “proper surrogates” originate in the fact that
Avar measures only a symmetry, or a lack thereof,
in equispaced triplet values of z,+m. Total applies
a consistency hypothesis in addition to measures of
symmetry. “Consistency” means that averages of
certain individual estimates can equally serve as any
other individual estimate. Since oscillator and clock
designers seek persistent frequency, it follows that es-
timates of frequency and frequency stability can be
derived in a variety of ways which take advantage of
consistency within statistical variability.

For example, the form of Avar in (1) originated
because values of {y,(m)} are actually measured
asymetrically with respect to {zn} values, that is,
post facto in which §,(m) = m,ro =2 (Zp — Tn_m). For
symmetry however, we can substitute
3

Ta(m) = 7 (Tnrg -

:L‘n._.',‘g .

By a linear interpolation, ¥p(m) = average of:

(l‘n_m —En) and —— m,_ (In $n+rn)1

mﬂ'o

whose result is 2mT (Zn4m — Tn—m), Or equivalently
yo(2m). In other words we can use yo(m) defined
symmetrically in (3) in place of 2 (2m). 75 (2m) can
in turn be used as a “surrogate value” of 7,(2m) in
addition to the usual asymmetrically-computed val-
ues of §,,(2m) in (1) or (2) for the Allan variance esti-
mate &3 (2m). Likewise, 75, (2m) can serve in place of
T.(4m). We can extend this idea to computations at
7o (4m), 75 (8m), and so forth, and find by this pyra-
mid method a greater number of terms that can serve
as quantities in estimation (1) while still maintaining

its basic properties. Repeating this process reveals a
pattern which, when combined with either (1) or (2),
serves as a motivating idea for a new statistic called
“Total variance.”

5. Implementing the Concept
Using a symmetry argument, we can define a use-
ful expectation which is independent of values of av-
eraging time index m and the time index n. Redefine
T,(m) as centered at n by

Yo(m) = & ( o Ynes + Eﬁlynﬂ) (4)

or in terms of {z,} values, §,(m) = mm (Tn-z -
Tn4z), for m-even. Random FM noise processes also
center before and after n such that,

E {na(m) = Tn(m) } = E {Tp_g (m) = To(m)} .
Therefore
E{Gnr(m) = Tnog(m) } =0,

and we can derive the symmetric form of the Allan
variance as

az(m) = %E { [ﬂ,ﬂ_v_;(m) T (m)]z} (3)

Substitute s for m in (4), and define (5) in terms of
Y. (s) to obtain

29 = 55 { e ) ~Tug O] '} ©

The separation between any two ¥ samples in (6) is
still m as in (5), but now we are in a position to pos-
itively and negatively vary or symmetrically “mod-
ulate” the averaging-time s of each 7 in the neigh-
borhood of its usual value m by a small range, say,
+6. This has the effect of smoothing ¢2(m) by using
interpolated or “surrogate” values in addition to the
usual values of F 1z (M) — ¥,z (m) as described in
the previous section. Finally, we increment n, repeat
the process, square differences and average to obtain
the value of 62(m). Generally speaking,

02 401(m) = 02,(m, 5) = smoothed version of o2(m).

The smoothing operation above picks up additional
estimates of az(m) as m increases, improving the
usual max-overlap Allan variance estimate, especially
if that estimate is uncharacteristically high or low.
Equation (6) and hence 02,,,,(m) differ from the Al-
lan variance because each term constituting a 2m in-
terval yields its result dependent on m and s. This
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is because the difference-pair of average frequencies
Gnym(s) ~TVn-z (s) may be separated when s < m or
overfapped when s > m. They are conjoined, or adja-
cent only when é = 0 making s = m. With WHFM,

0%,:01(m) is unbiased with respect to oZ(m) and is

biased negatively with FLFM and RWFM. The bias
depends on the depth of modulation é relative to m
but ought to be limited to § = % or a full range given
by no more than m itself. This is so that 62,,,(m)
is controlled in a reasonable manner over data run of
length N, an issue discussed next.

Returning to measuring frequency stability from
an actual data run, recall that m is a parameter which
defines interval 7 = mmo. The estimate of 02,,,(7)
for a data duration T involves two issues. The first
is that our ability to smooth becomes more and more
restrictive as m — N, (or equivalently, as 7 — T)
because the extent with which we can modulate m
and increment n is bounded by the beginning and
end points of a fixed-length data run. Second, I have
mentioned one way to more fully use the available
data. There are other ways from which ad hoc ma-
nipulation and averaging of ?ni%(s) differences can
yield improved estimates of the Allan variance. In
concept, any could be designated as a “Total” vari-
ance if it includes essentially all average frequency
differences in a symmetric totality over interval 2r
(to be consistent with the Allan variance). One way
in particular is simple to implement, has been tested
on the expected FM noises and other oscillator er-
ror sources, and has an important connection to the
classical standard variance explained in the last sec-
tion. This Total variance evolved from experiments
in which the usual max-overlap Avar estimator was
applied to periodic extensions of the original data [6].

The most efficient analysis of frequency stability
would be to apply forementioned surrogate values
where they are needed most, namely at long-term
T-values, beyond 7 = m7y = 10% of the data run
T = N,719. For a given 7-value and data run of
length T, the number of samples in the standard es-
timator for the Allan variance is of order -3,:, thus (2)
is usually more than adequate for determining noise
level at short- to medium-term 7-values. A recom-
mended characterization of frequency stability now
includes the use of Total variance for the range at
long term % > 10% {1). This recommendation re-
sulted from what can be regarded as a “hybrid esti-
mator” which uses the standard Allan estimator for
short- and medium-term 7-values and rather conve-
niently applies more surrogate values in long term
until they are all applied at the usual Avar function
limit of 7 = LV—'=2=1— - 70, half the data run. Such an es-
timator, now dubbed “Totvar,” was introduced in {7]

Figure 1: Circular extension of the original z(t) data
set for computation of Totvar. (a) Extension of a
phase record by “reflection” at both ends; (b) circular
representation of extended phase record.

and refined in [9] and [10]. Totvar here is regarded
as a composite function of the normal Avar statistic
62(,T) and a sample Total statistic 62,,,(7,T) as

v
Totvar(r,T) = f(82(7,T), 62,0 (7, T)).

Thus Totvar is always a sample variance of a data

run of length T. The definition of Totvar is

Totvar(r,T) = Totvar (m, 79, Nz) =
(+£..,
for 1 < m < Ny — 1 where an extended virtual se-

quence {z#} is derived as follows: for n =1 to N,
let z# =z,;for j=1to Ny — 2 let

Nz-1

2
#
e VD) Som=2 —2zf + $n+m) » (7)

#

_ # — .
i =2%1 ~ T14j, Th,4; = 2TN, — TN.—j- 8)

Constructing the extended virtual sequence as
in (8) is illustrated in Figure 1 and is called
extension by reflection. Because of the symmetry
of the extended data, the number of summands in
(7) does not depend on m. Surrogates values in Tot-
var emerge from this data extension. Rather than
doing extensions of the original vector {z,} and ap-
plying the straight second-difference, we alternatively
can resample within the original vector. Applied to
Totvar, this exercise only points out that the proce-
dure used in the sampling function is intricate and
not very intuitive because sampling on {z,} is no
longer in terms of equispaced triplets spaced 27 [9].
For example, note that 7 can go to (Nz; —1)7p in
(7)-(8) instead of the usual limit of {(N, — 1) /2] 0.
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Totvar can also be defined in terms of extended
normalized frequency averages by
Totvar(r, T) = Totvar (m, 7o, Ny + 1) =
2
Eim —3t) / (m70).

The concept of Total variance was motivated by a
simple need for improved long-term estimation of the
Allan variance and encouraged by the results using
a straight circularization technique on original data
{zx}, but this technique could not work in the pres-
ence of RWFM and/or significant drift [6,11]. Totvar
here is classed as a hybrid statistic combining the
benefits of sample Allan variance with sample Total
variance. Totvar has been tested on the range of FM
power-law noise types [4] and other expected oscilla-
tor and measurement-system error sources [2,7].

We can illustrate (7)-(8) as a hybrid statistic in
the following way. If m = 1, the virtual extension
{z#} only needs to be 7o longer than {z,} at both
ends to compute (7). Thus (7) is essentially the stan-
dard Allan estimator (2). As m increases, the virtual
extension needs to be longer until at m = &=L the
extensions at each end are length 52;1 Of course,
there is no standard Allan estimator in the region
7> Z, s0 if the “hybrid” called Totvar in (7) is al-
lowed to compute values for m > ¥z=1 it reverts to
a region defined by the Total variance but not the
Allan variance. Computations of Totvar should not
extend beyond 7 = 32”- to be consistent with the limit
of the standard Allan estimator, but these higher or-
der terms will be considered in the last section.

For accurately estimating the Allan variance, an
adjustment must be made to the hybrid estimator
Totvar as defined by (7) and its extension {z#} in
(8) to remove a normalized bias (denoted as nbias)
which depends on the ratio & and whether the noise
type in long-term is FLFM or RWFM rather than
WHFM. The most noteable adjustments using Tot-
var in this manner involve formulae for nbias and in-
creased edf compared to the Allan estimator. These
can be summarized as [10]

(9)

where §# (m) = (z

nbias (7) = E{Tetyer(r.T)} T°;:7;;’T -1=-af, (10)
edf () = edf{Totvar (1, T)] ~ bL — ¢, (11)

where 0 < 7 < Z and a, b, and c are given in Table 1.
The values of nbias and edf for the important longest-
term case 7 = T/2 are tabulated in Table 2. The
edf formula (11) is empirical, with an observed error
below 1.2% of numerically computed exact values; the
tabulated values of edf (I°/2) in Table 2 are exact.

Table 1: Coefficients for computing normalized bias
and edf of Totvar in the presence of FM noises.

Noise a b c
WHFM 0 3/2 0.000
FLFM (3In2)"' 24(In2)®7~2 0.222
RWFM 3/4 140/151  0.358

Table 2: Tabulated exact quantities for 7 = T'/2.

Noise  nbias(T/2) edf(T/2)
WHFM 0 3.000
FLFM ~0.240 2.097
RWFM -3/8 1.514

Both Totvar and Avar are invariant to certain
manipulations of the vector {z,}. The simplest ex-
ample is that we can reverse and/or invert the se-
quence {z,} without affecting either’s result. Un-
like Avar’s simple sampling function however, Tot-
var’s many sampling functions between 79 < 7 < %
are complicated and can be derived from formulae in
ref. [9], but unraveling useful information from them
is difficult. It is as informative and easier to look at
the frequency-response function associated with Tot-
var compared to Avar as in Figure 2 for a comparison
of the effect of their sampling functions. The dashed
curve in Figure 2 is a constant-Q), one-octave pass-
band filter response considered to be ideal for extract-
ing typical power-law noise levels [12-16]. Totvar im-
plements a circular convolution of Avar’s frequency
response, thus significantly reducing the depth of pe-
riodic nulls.

6. Uncertainty of Estimates

Returning to the topic of characterizing noise,
the reason for using Totvar is for very efficient ex-
traction of commonly-encountered integer power-law
noise types and levels of an oscillator’s spectral FM
noise. This means greater certainty in the extrac-
tion of these parameters and others such as drift and
quasi-sinusoidal modulation shown in Figure 3. In
retrospect, the formulation of the two-sample Allan
ensemble average will contain Ny average frequen-

cies and only l_’r{;—"l — 1 independent intervals with
which to do a computation. This represents the ac-
tual number of “degrees of freedom”. In general the
1o accuracy of the computation for Ny, sets is sim-

ply given by

10 9
oMz _ 1)

T(m
m

% error, Allan deviation =
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Figure 2: A comparison of frequency responses of
Avar (solid curve), Totvar (shaded curve), and a
passband variance consisting of a simple cascade of
a single-pole high-pass followed by a low-pass filter
with identical break points at RC = 7/2 (dashed
curve [13]).

This expression is an uncertainty which is adequate
for a quick upper-bound approximation for a confi-
dence interval or error bars above and below each
value of the Allan deviation vs. 7. We assume that
the probability distribution is chi-squared, and ex-
act confidence intervals can be determined based on
the equivalent degrees of freedom (edf) in overlapping
statistical averages for a given noise type, rather than
the actual number [5,17].

Sample estimates of the Total variance (given by
the Total deviation or root Totvar, convenient plots of
interest) have edf’s that are greater than even those
using the max-overlap estimates of the Allan vari-
ance, and significantly greater at long-term 7-values.
Chi-squared distribution functions are used for the
Allan variance, but it turns out that the distribution
functions are slightly narrower using Totvar (which is
another of its benefits) at long averaging times. Thus
a conservative upper-bound approximation for either
the Total deviation or root Totvar 1o accuracy is

100

V2(edf)’

where edf values are conveniently derived from (11)
and Table 1 based on the computation of the Total
deviation as a ratio of 7 to the length of the data run
T, rather than the Allan deviations’s i’fnﬂ indepen-

% error, Total deviation = (13)

dent sets as above.

7. Analysis of Variance

Consider a function of independent variables. In
analysis of variance, we explain the total variability
of the function in terms of each variable. In the dis-
cussion here, we address functionals which depend
on a time interval At. At this point we can recall a
conservation principle regarding the standard sample
variance, which states that the mean of the inter-
val variances plus the variance of the interval means
equals the standard variance of the entire series. This
is true for any process, stationary or not. An analysis
of variance in terms of the mean of k interval vari-
ances and variance of the k interval means is derived
in Appendix I.

The standard variance of finite series {X;} in Ap-
pendix I is simply a number, partly due to the vari-
ance of k interval means and the remaining part due
to the mean of & interval variances. Now consider in-
tervals of duration At and a whole data run of length
T. The longest possible set of equal-length intervals
would be At = T/2, thus there are k¥ = 2 consecu-
tive interval means. We recognize that the variance
of such two-interval means is the special-case two-
sample variance equaling %&3 (T'/2), half the sample
Allan variance at 7 = T'/2. But half the sample Al-
lan variance will differ from the standard variance by
a remaining portion attributable to the sample vari-
ance within each of the two intervals by the conser-
vation principle just stated. By double-sampling at
At = T/4, we find the two-sample variance (k = 2)
now must consist of two nonoverlapped variance esti-
mates whose average, denoted as &3,“"0 (T/4), would
be the remaining portion if that were as far as the
data could be sampled. Repeating this process until
there are no remaining interval variances left unac-
counted for, we find that

_21_ (&S,nono(ro) + &5,nono(27—0) + b (14)

+67 nono(T/4) + 63 10no(T/2)) = 624(T),

where T = m7y,m = 29 for j = 0,1,...,J — 1 and
the nonoverlapped estimator of the Allan variance is

NN,

oi DT 2
o o |
Fnel®) = 557 2 [F2k2 @) = Tpuo1r (2]

The composite in (14) is a common property of
what is called a “multiresolution pyramid” {18]. The
nonoverlapped £ = 2 condition requires that the
T-intervals occur in power-of-two increments. This
nonoverlapping sample Allan variance would relate
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Figure 3: Total deviation plot (or root Totvar) showing power-law noises as straight lines in addition to
other error sources. The goal is to identify noise sources and accurately estimate their levels with this kind

of frequency stability plot.

directly to the sample standard variance as in (14)
but is inefficient as an estimator {15]. Unfortunately
the sample Allan variance from its definition, for
example at At = T/4, calls for three variance esti-
mates, not two nonoverlapped, because its definition
includes a 7 = At overlap and the straightforward
relationship to the standard variance is lost rather
quickly. In otherwords, even for a short series,

1

5 (G3(T/4) + 83(T/2)) # 6%4(T),
in contrast to (14). Since the definition of the Al-
lan variance contains one 7-overlap, we can admit
all possible overlaps to obtain an improved estimator
in order to minimize its error bars. Known as the
standard “max-overlap” Allan estimator [5] given as
(2), it also departs from a tractable connection to the
standard variance for the same reason as the original
T-overlap estimator.

Functionals which depend on a time interval At
have such a strong connection to spectral functions
that (14) is a “decomposition” of the sample stan-
dard variance and seems an appropriate jargon and
so is commonly used. In this regard, decomposi-
tion of the standard variance is suited to frequency-
domain analysis, and Totvar maintains a straightfor-
ward relationship with the sample standard variance.
It abides by the conservation principle if we consider
an infinite extension by reflection. This means that
the virtual sequence generated by (8) and shown in
Figure 1 recurs indefinitely [10]. Percival [19] was
the first to point out that for the case in which Tot-
var is computed in power-of-2 increments above T'/2

as estimated from data-run T as in (7), a remaining
portion, the sum of Totvar terms of all power-of-2
intervals 7 > T'/2 for 7 — oo, adds to the usual mul-
tiresolution pyramid to precisely equal the standard
sample variance. These leftover higher-order compo-
nents are never actually reported but are an artifact
of infinitely extending the orginal sequence. They
can be regarded as the sum of O-frequency aliases, a
remaining “D.C.” term to make up &2,,(T). Green-
hall [10] coined the term Remvar(%) to designate this
portion. Totvar beyond T soon drops to nearly zero,
so the remaining portion above T is generally very
small. Nevertheless, Remvar accounts for this por-
tion and was used in the proof of the decomposition
of the standard variance. Summing all the familiar
“power-of-2” T-values in a Totvar plot leads to ex-
actly twice the standard sample variance much in the
same way that integrating an estimate of a spectrum
also yields the sample variance.

Knowledge that we can account for all varia-
tions in a data-run by its standard variance as
“decomposed” in calculations of the sample Total
variance is especially useful. For example at a
long-term 7-value of T'/2, an equal remaining por-
tion (Totvar(Z)=Remvar(%)) would indicate that we
have summarized completely the variations at T'/2.
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Appendix I
Consider a series {X;;} with k intervals each having
n values and means m;, j = 1, ...,k. Assume

X =035 mi=0 (15)

and put

Xij = zij +my, (16)

so that
Et—l zi; =0. (17)

The standard variance of the data run is denoted V' =

52 where

58 =Yk | T (@i +my). (18)

5§ = Z:ﬁ;l
plus terms of the form

T

V=2=58 =%[Z'—1 R DI ”]

E&
k

4 + .+ o0, 75 +nm? +nm? (19)

2zim; = 2m; 301, Ti; = 0.

+H+. R =3 ZJ_I 35, (At)+vm = EN J(At()+vm

20)

where €2__(At) is the mean of the interval variance

55,7

&2, ;(At), and vy, is the variance of the interval means

m;.

1099



