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1. THE SINE WAVE AND STABILITY
A sine-wave signal generator produces a voltage that

changes in time in a sinusoidal manner as shown in
Fig. 1. The signal is an oscillating signal because the
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Figure 1. A repeating sine function is the basis of an oscﬂlatmg
signal.

sine wave repeats itself. A cycle (2= radians of phase) of
the oscillation is produced in one period 7.

It is convenient for us to express angles in radian units
rather than in units of degrees, and positive zero crossings
of the voltage will occur every 2z radians. The frequency v
is the number of cycles in one second (Hz), which is the
reciprocal of period (seconds per cycle). The expression
describing the voltage V produced by a sine-wave mgnal
generator is given by

V(©) = Vo[l +a(®)]sin[®(?)]

where Vj is the peak voltage amplitude, a(?) is amplitude
noise, and ®(z) is the total accumulated phase. Equivalent
expressions are

V(&) =Vo[1 +a(?)]sin (2;: %)

and
V(£) = Vo[l +a(t)] sin(2nve)

For the following discussion, we will assume the ampli-
tude noise a(t) is zero. Consider Fig. 2. Let’s assume that
the maximum value of V equals 1, hence Vy=1. We say
that the voltage V(t) is normalized to unity.

If we are given the frequency of the sine wave, then no
matter how big or small Az may be, we can determine AV.
Let us look at this from another point of view. Suppose
that we can measure AV and At. From this, there is a sine
wave at a unique minimum frequency corresponding to
the given AV and At. For infinitesimally small At, this fre-
quency is called the instantaneous frequency at this t. The
smaller the interval Az, the better the approximation of
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Figure 2. For a given phase, AV vs. At of the sine-wave signal
corresponds to a unique minimum frequency called the instanta-
neous frequency if At is diminishingly small.



instantaneous frequency at ¢. In practice, because of finite
bandwidths, we cannot measure the instantaneous fre-
quency.

When we speak of oscillators and the signals they pro-
duce, we recognize that an oscillator has some nominal
frequency at which it operates. The “frequency stability”
of an oscillator is a term used to characterize how small
the frequency fluctuations of the oscillator signal are. We
usually refer to frequency stability when comparing one
oscillator with another. As we shall see later, we can define
particular aspects of an oscillator’s output, then draw con-
clusions about its relative frequency stability. People often
speak of “frequency stability” when they actually mean
“frequency instability.” Frequency stability is the degree
to which an oscillating signal produces the same value of
frequency for any interval At throughout a specified period
of time. An internationally recommended definition of
“frequency instability” is: “The spontaneous and/or envi-
ronmentally caused frequency change within a given time
interval.”!

Let’s examine the two waveforms shown in Fig. 3. Fre-
quency stability depends on the amount of time involved
in its measurement. Of the two oscillating signals, it is
evident that “2” is more stable than “1” from time #; to #3
assuming that the horizontal scales are linear in time.
From time ¢; to time ¢, there may be some question as to
which of the two signals is more stable, but it’s clear that
from time £, to time 3, signal “1” is at a frequency different
from that in interval ¢; to 5.

If we want an oscillator to produce a particular fre-
quency vo, then we’re correct in stating that if the oscilla-
tor signal frequency deviates from vy over any interval,
this is a result of something that is undesirable. In the
design of an oscillator, it is important to consider the
sources of mechanisms that degrade the oscillator’s fre-
quency stability. These undesirable mechanisms cause
random (noise) or systematic processes to exist on top of
the sine-wave signal of the oscillator. To account for the
noise components at the output of a sine-wave signal gen-
erator, we can express the output as

V(£) = Vo[1 + a(t)] sin[2nvot + ()] (1)

where

Vo =nominal peak voltage amplitude
a(t) =deviation of amplitude from nominal (i.e., §V/V})
vo =nominal fundamental frequency
¢(t) = deviation of phase from nominal

Ideally @ and ¢ should equal zero for all time. However, in
the real world there are no perfect oscillators. To deter-
mine the extent of the noise components a and ¢, we turn
our attention to measurement techniques.

1The present IEEE standard for the measure of frequency stabil-
ity is the one-sided spectral density S,(f) in the frequency domain
or the two-sample or Allan variance ay(r) in the time domain.
These are explained later.
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Figure 3. Top (1): Instantaneous frequency is inconsistent and
less stable from ty to t;. Bottom (2): Instantaneous frequency is
consistent and more stable throughout.

The typical precision oscillator, of course, has a pre-
sumably stable sinusoidal voltage output with a frequency
v and a period of oscillation T (which is the reciprocal of
the frequency: v=1/T). One goal is to measure the fre-
quency and/or the frequency stability of the sinusoid. In-
stability is actually what is measured, but with little
confusion it is usually called “stability” in the literature.
Naturally, fluctuations in frequency correspond to fluctu-
ations in the period. Almost all frequency measurements,
with very few exceptions, are measurements not of fre-
quency but of the phase or of the period fluctuations in an
oscillator, even though the frequency-may be the readout.
As an example, most frequency counters sense the zero (or
near-zero) crossing of the sinusoidal voltage, which is the
point at which the voltage is the most sensitive to phase
fluctuations.

We must also realize that any frequency measurement
involves two oscillators. In some instances, one oscillator
is in the counter. It is impossible to purely measure only
one oscillator. In some instances one oscillator may suffi-
ciently outperform the other, and the fluctuations mea-
sured may be considered essentially those of the latter.
However, in general because frequency measurements are
always dual, it is useful to define

y(t) = L i) (2)
Yo

as the fractional frequency difference or offset of oscillator
one v; with respect to a reference oscillator vo divided by
the nominal frequency vq. Conceptually, we can also think
of Eq. (2) as the free-running frequency of an individual
oscillator v,, differentiated with respect to its own nominal
value vy. Now, y(£) is a dimensionless quantity and useful
in describing oscillator and clock performance; that is, the
time fluctuation or difference x(¢) of an oscillator over a
period of time ¢ is given simply by

O(f)

(3)
ZJ\,LU

14
x(t) = f y(thdt' =

We see that the time deviations and the phase deviations
are related by a constant, 1/2nvq. Since it is impossible to
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measure instantaneous frequency, any frequency or frac-
tional frequency measurement always involves some sam-
ple time, At or t—some time window through which the
oscillators are observed; whether it’s a picosecond, a sec-
ond, or a day, there must always be some sample time. So,
when determining a fractional frequency y(¢), what is in
fact happening is that the time difference is being mea-
sured starting at, say, some time ¢ and again at a later
time, ¢+ 1. The difference between these two time differ-
ences, divided by 7, gives the average fractional frequency
over that period :

_x(t+1) —x()

¥(t) (4)

Tau () may be called the sample time or averaging time; it
may be determined, for example, by the gate time of an
electronic counter.

What happens in many cases is that we sample a num-
ber of cycles of an oscillation during the preset gate time of
a counter; after the gate time has elapsed, the counter
latches the value of the accumulated count of cycles so
that it can be read out, printed, or stored in some other
way. Then there is a delay time for such processing of the
data before the counter arms or initializes and resumes on
the next cycle of the oscillation. During the delay time (or
process time), information is lost. This is called “dead-
time”, and in some instances it becomes a problem. Un-
fortunately for data processing in typical oscillators the
effects of deadtime often hurt most when it is the hardest
to avoid. In other words, for times that are short compared
to a second, when it is very difficult to avoid deadtime, this
is usually where deadtime can make a significant differ-
ence in the data analysis. Typically, for many oscillators, if
the sample time is long compared to a second, the dead-
time makes little difference in the data analysis, unless it
is excessive [1]1. New equipment or techniques are now
available that contribute zero or negligible deadtime [2].

In reality, of course, the sinusoidal output of an oscil-
lator is not pure; it contains noise (frequency) fluctuations
as well. We will describe three different methods of mea-
suring the frequency fluctuations in precision oscillators
other than measuring the frequency directly with a fre-
quency counter, listed as a fourth method. The direct fre-
quency counter technique is often very limiting because
the number of resclvable digits on the counter are often
inadequate for precision oscillators, and counter input
noise masks oscillator noise for short sample times. In
all the methods one also needs to properly match the im-
pedances of different connected electronic instruments,
use short connecting cable lengths, and use high-quality,
stable connectors.

1.1. Common Methods of Measuring Frequency Stability

1.1.1. Beat-Frequency Method. The first technique is
called a heterodyne frequency-measuring method or
beat-frequency method. The signals from two independent
oscillators are fed into the two ports of a double balanced
mixer, as illustrated in Fig. 4. The device labeled “Amp” is
an amplifier.
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Under TeLI{ Mixer I“—| Oscillator
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- b
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Figure 4. Measurement of the frequency difference (“beat note”)

between oscillators can increase measurement precision. State-of-
the-art oscillators can readily be measured by this method.

The difference frequency, or the beat frequency w, is
obtained as the output of a lowpass filter (to suppress car-
rier frequency harmonics) that follows the mixer. This
beat frequency is then amplified and fed to a frequency
counter and printer or other recording device. The
fractional frequency is obtained by dividing v}, by the nom-
inal carrier frequency vo. This system has excellent
precision; one can measure essentially all state-of-the-
art oscillators.

1.1.2. Dual-Mixer Time-Difference (DMTD) System. This
technique uses two heterodyne measurements operating
simultaneously. The time difference of the zero crossings
of each beat frequency is measured and yields an excellent
precision, 10~ !3 seconds. A block diagram is shown in
Fig. 5. It should be mentioned that if time or time fluctu-
ations can be measured directly, an advantage is obtained
over just measuring frequency. The reason is that we can
readily calculate the frequency from the time, only if there
is no deadtime. In the past, frequency was not inferred
from the time (for sample times of the order of several

Dual Mixer Time Difference System
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Figure 5. Measurement of the time difference between two beat
notes from two oscillators with a common transfer oscillation can
further increase measurement precision. Instability of transfer
oscillator cancels to first order.



seconds and less) because the time difference between a
pair of oscillators operating as clocks could not be
measured with sufficient precision. However, now the
precision of DMTD opens the door to measuring time
fluctuations as well as frequency fluctuations for
sample times as short as a few milliseconds, all without
deadtime.

In Fig. 5, oscillator 1 could be considered to be
under test and oscillator 2 could be considered to be the
reference oscillator. Their outputs go to the ports of a pair
of double-balanced mixers. Another oscillator with sepa-
rate symmetric buffered outputs is fed to the other
two ports of the pair of double-balanced mixers. This com-
mon oscillator’s frequency is offset by a desired amount
from those of the other two oscillators. Then two different
beat frequencies are produced by the two mixers as shown.
These two beat frequencies will be out of phase by
an amount proportional to the time difference between
oscillators 1 and 2—excluding the differential phase shift
that may be inserted (component “4” is a phase shifter).
Further, the beat frequencies differ in frequency by an
amount equal to the frequency difference between oscilla-
tors 1 and 2.

This measurement technique is very useful where os-
cillators 1 and 2 outputs are at very nearly the same fre-
quency. This is typical for atomic standards (cesium,
rubidium, and hydrogen frequency standards).

Illustrated at the bottom of Fig. 5 is what might
represent the beat frequencies from the two mixers.
A phase shifter may be inserted as component “4” to ad-
just the phase so that the two beat rates are nominally
in phase; this adjustment sets up the nice condition that
the noise of the common oscillator tends to cancel (for
certain types of noise) when the time difference is deter-
mined. After these beat signals are amplified, the
start port of a time interval counter is triggered with the
positive zero crossing of the other beat. Taking the
time difference between the zero crossings of these beat
frequencies, we measure the time difference between
zero crossings of oscillators 1 and 2, but with a precision
that has been amplified by the ratio of the carrier fre-
quency to the beat frequency (over that normally achiev-
able with this same time interval counter). The time
difference x(i) for the ith measurement between oscilla-
tors 1 and 2 is given by

o AL bk _
x(i) = - ) _ T'i). — (5)
ThVo Zuh) Vo

where At(i) is the ith time difference as read on the count-
er, 1, is the beat period, vo is the nominal carrier frequen-
¢y, ¢ is the phase delay in radians added to the signal of
oscillator 1, and k is an integer number of cycles of vy to be
determined in order to remove the cycle ambiguity. It is
important to know & only if the absolute time difference is
desired; for measurements of frequency and of time fluc-
tuations, £ may be assumed zero unless we go through a
cycle during a data run. The fractional frequency ¥(i,7)
between oscillators 1 and 2 can be derived in the normal
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way from the time fluctuations:

vi(t, ) — va(i, 7)
e
o x(G+1)—x(0
y19(i,7)= M (6)

T

At(i + 1) — At(Z)

‘.'b Vo

In Egs (5) and (6), it is assumed that the transfer (or com-
mon) oscillator is set at a frequency lower than those of
oscillators 1 and 2, and that the voltage zero crossing of
the beat frequency v, — v, starts—and that vy — v, stops—
the time interval counter. The fractional frequency differ-
ence may be averaged over any integer multiple of 7,

; x(i +m) —x(i -
Yi2(i,mtp) = it i) (7
mty

where m is any positive integer. If needed, t}, can be made
to be very small by having very high beat frequencies. The
transfer (or common) oscillator may be replaced with a low
phase noise frequency synthesizer, which derives its basic
reference frequency from oscillator 2. In this setup the
nominal beat frequencies are given simply by the amount
by which the output frequency of the synthesizer is offset
from vo. Sample times as short as a few milliseconds with
subpicosecond (<1 ps) resolution are obtained. Note that
logging the data at such a rate usually requires special
equipment. The National Institute of Standards and Tech-
nology (NIST) timescale measurement system is based on
the DMTD.

1.1.3. Loose Phase-Locked Loop Method. This type of
method is illustrated in Fig. 6. The signal from an oscil-
lator under test is fed into one port of a mixer. The signal
from a reference oscillator is fed into the other port of this
mixer. The signals are in quadrature; that is, they are 90°
out of phase, so that the average voltage out of the new
mixer is nominally zero, and the instantaneous voltage
fluctuations correspond to phase fluctuations rather than
to amplitude fluctuations between the two signals. The
mixer is a key element in the system. The advent of the
Schottky barrier diode was a significant breakthrough in
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Qutput of
Ret PLL Filter
Oscillator
Voltage Control —L

of Frequency

B

Figure 6. Direct measurement of the phase difference between
two oscillators yields excellent precision. The technique requires
electronic frequency control of a clean reference oscillator to
maintain a loose phase lock, hence a zero beat.
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making low-noise precision stability measurements. The
output of this mixer is fed through a lowpass filter and
then amplified in a feedback loop, causing the voltage-
controlled oscillator (reference) to be phase-locked to the
test oscillator. The response time of the loop is adjusted
such that a very loose phase-lock (long-time-constant) con-
dition exists.

The response (or attack) time is the time it takes the
servo system to make 70% of its ultimate correction after
being slightly disturbed. The response time is equal to
1/nwy, where wy, is the servo bandwidth. If the response
time of the loop is about a second, then the voltage fluc-
tuations will be proportional to the phase fluctuations for
sample times shorter than one second. Depending on the
coefficient of the tuning capacitor and the quality of the
oscillators involved, the amplification used may vary sig-
nificantly, but may typically range from 40 to 80 dB via a
good low-noise amplifier. In turn this signal can be fed to a
spectrum analyzer to measure the Fourier components of
the phase fluctuations. It is of particular use for sample
times shorter than one second (for Fourier frequencies
greater than 1Hz) in analyzing the characteristics of an
oscillator. It is particularly useful if one has discrete side-
bands such as 60Hz, or detailed structure in the spec-
trum.

One may also take the output voltage from the above-
mentioned amplifier and feed it to an analog-to-digital
(A/D) converter. This digital output becomes an extremely
sensitive measure of the short-term time or phase fluctu-
ations between the two oscillators. Resolutions of the
order of a picosecond (ps) are easily achievable.

1.1.4. Time-Difference Method Using a Counter. The last
measurement method we will illustrate is very commonly
used, but typically does not have the measurement preci-
sion that is more readily available in the first three meth-
ods illustrated above. This method, called the time-
difference method, is shown in Fig. 7. Because of the
wide bandwidth needed to measure fast-risetime pulses,
this method is limited in signal-to-noise ratio. However,
some commercially available counters allow us to do sig-

Time Interval Counter
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Figure 7. Measurement of the time difference between two os-
cillators, usually after division by N to obtain 1 pulse-per-second,
yields only moderate measurement performance compared to pre-
vious methods. The technique is dependent on several properties
of the counter and its trigger circuits.

nal averaging or precision risetime comparisons (precision
of time-difference measurements in the range of 10ns—
10ps are now available). Such a method yields a direct
measurement of x(¢) without any translation, conversion,
or multiplication factors. However, even if adequate mea-
surement resolution is available, caution should be exer-
cised in using this technique because it is not uncommon
to have significant instabilities in the frequency dividers
shown in Fig. 7—of the order of 100 ps. The technique is
therefore suitable for long, not short, averaging times.

A trick to bypass divider problems is to feed the oscil-
lator signals directly into the time interval counter and
observe the zero-voltage crossing. The divided signal can
be used to resolve cycle ambiguity of the carrier; otherwise
the carrier phase at zero volts may be used as the time
reference. The slope of the signal at zero volts is 2zVy/ty,
where 7, =1/v; (period of oscillation). For V=1V and a
5-MHz signal, this slope is 3 mV/ns, which is a good sen-
sitivity. (Caution: A correct impedance match of less than
1.5 VSWR is critical for this setup to be stable.)

2. CHARACTERIZATION

Given a set of data for the fractional frequency or time
fluctuations between a pair of oscillators, it is useful to
characterize these fluctuations with reasonable and tract-
able models of performance. In so doing for many kinds of
oscillators, it is useful to consider the fluctuations as ran-
dom (may be predicted only statistically) or nonrandom
(i.e., systematic—environmentally induced or that have a
causal effect that can be determined and in many cases be
predicted). '

2.1. Nonrandom Fluctuations

Nonrandom fluctuations are usually the main cause of de-
parture from “true” time or “true” frequency in the long
term.

If, for example, we have values of the frequency over a
period of time, and a frequency offset from nominal is ob-
served, one may calculate directly that the phase error
will accumulate as a ramp. If, on the other hand, the fre-
quency values drift linearly, then the time fluctuations
will behave quadratically. In almost all oscillators, these
“systematics,” as they are sometimes called, are the pri-
mary cause of time and/or frequency departure. A useful
approach for determining the value of the frequency offset
is to calculate the simple mean of the set, or for determin-
ing the value of the frequency drift by calculating a linear
least-squares fit to the frequency. A least-squares qua-
dratic fit to the phase or to the time deviations is rarely as
efficient an estimator of the frequency drift for most oscil-
lators. Precision frequency standards are affected by their
environment. These environmental perturbations often
cause long-term departures of frequency and time, which
in a data run can look like drift, but are not.

2.2. Random Fluctuations

After the systematic or nonrandom effects of a dataset
have been calculated or estimated, they may be subtracted



from the data, leaving the residual random fluctuations.
They can usually be best characterized statistically using
a,(7), the Allan deviation, for short t (values) and “Theol”
for long 7, the agreed-on standards (IEEE) in the time do-
main, to be explained in the next section. It is often the
case for precision oscillators that these random fluctua-
tions may be effectively modeled with power-law spectral
densities. This topic and measurements of spectrum are
discussed later. We have

Sy(f)=haf* (8)

where S,(f) is the one-sided spectral density of the frac-
tional frequency fluctuations, fis the Fourier frequency at
which the density is taken, &, is the coefficient indicating
the level of that type of noise, and « is a number modeling
the most appropriate type of power law for the data. If we
observe from a logaf(r)/logr diagram a particular slope
(call it u) over certain regions of sample time, 7, this slope
has a correspondence to a power-law spectral density or a
set of the same with some amplitude coefficient 4,. In par-
ticular, u= —(x+1) for —3<a<1 and p= —2 for a>1.
Further, a correspondence exists between h, and the
coefficient for o,(r) [1]. The transformations for some of
the more common power-law spectral densities have
been tabulated, making it quite easy to transform the fre-
quency stability modeled in the time domain over to the
frequency domain and vice versa. Examples of some
power-law spectra and other types of noise that have
been simulated by computer are shown in Fig. 8. The
root Allan variance (an RMS or deviation called “Adev”)
and Theol-deviation are constructed to extract frequency
instability and not measurement system noise. Synchro-
nization and measurement system noise is phase or time
instability characterized by other statistics such as time
deviation (TDEV) and maximum time interval error
(MTIE) [3].

Once the noise characteristics have been determined,
one is often able to deduce whether the oscillators are
performing properly, and whether they are meeting either
the design specifications or the manufacturer’s specifica-
tions. For example, a cesium beam frequency standard or
a rubidium gas cell frequency standard, when working
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Figure 8. “Adev” (root Allan variance estimate) showing power-
law noise as straight lines in addition to other errors. Our goal is
to properly interpret this kind of plot of frequency stability.
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properly, should exhibit white frequency noise (slope of —3)
for values of t of the order of a few seconds to several
thousand seconds.

3. ANALYSIS OF TIME DOMAIN DATA

Suppose now that we are given the time or frequency fluc-
tuations between a pair of precision oscillators measured,
for example, by one of the techniques outlined in Section 1,
and a stability analysis is desired. Let this comparison be
depicted by Fig. 9. The minimum sample time is deter-
roined by the measurement system. If the time difference
or time fluctuations are available, then the frequency or
the fractional frequency fluctuations may be calculated
from one period of sampling to the next. Suppose further
there are M values of the fractional frequency y;. Now
there are many ways to analyze these data. Historically,
people have typically used the standard deviation equa-
tion shown in Fig. 9, 04.4ev(7), Where y; is the average
fractional frequency over the dataset, and is subtracted
from each value of y; before squaring, summing, and di-
viding by the number of values minus one (M —1), and
taking the square root to get the standard deviation. We
have studied what happens to the standard deviation
when the dataset may be characterized by power-law spec-
tra that are more dispersive than classical white-noise
frequency fluctuations. In other words, if the fluctuations
are characterized by flicker noise or any other non-white-
noise frequency deviations, what happens to the standard
deviation for that dataset? We can show that the standard
deviation is a function of the number of data points in the
set (discussed next), and it is also a function of the dead-
time and of the measurement system bandwidth. For ex-
ample, using flicker-noise frequency modulation as a
model, as the number of data points increases, the stan-
dard deviation increases monotonically without limit.
Some statistical measures have been developed that do
not depend on the datalength and that are readily usable
for characterizing the random fluctuations in precision
oscillators. The IEEE has adopted a standard measure
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Figure 9. A simulated plot of the time fluctuations x(t) between a
pair of oscillators and of the corresponding fractional frequencies
calculated from the time fluctuations each averaged over a sample
time 7. At the bottom are the equations for the standard deviation
(left) and for the time-domain measure of frequency stability as
recommended by the IEEE (right).
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known as the “Allan variance” taken from the set of useful
variances developed, and an experimental estimation of
the square root of the Allan variance is shown as the bot-
tom right equation in Fig. 9 [2,4]. This equation is
very easy to implement experimentally, as we need to
simply add up the squares of the differences between ad-
jacent values of y;, divide by the number of them and by 2,
and take the square root. We then have the quantity that
the IEEE subcommittee has recommended for specifica-
tion of stability in the time domain, denoted by o,(x)

1 N ) 1/2
ay(x)= <§ Gt +1) —y(ﬂ)“‘) ©)

where the brackets “{ )” denote infinite time average. In
practice this is easily estimated from a finite dataset as
follows:

1 M-1

1/2
o, : TR -
6.»-(L>—[2(M_1)I_Zml yf)} (10)

=]

where the y; are the discrete frequency averages as illus-
trated in Fig. 9.

We would like to know how o,(7) varies with the
sample time 7. A simple and very useful trick that
we can use if there is no deadtime is to average the val-
ues for y; and y, and call that a new y, averaged over 27;
similarly average the values for y3 and y4 and call that a
new y, averaged over 27, and so on, and finally apply the
same equation as before to get 5,(27). One can repeat this
process for other desired integer multiples m of 7z, and
from the same dataset generate values for o,(m1) as a
function of mrt, from which one may be able to infer a
model for the process that is characteristic of this pair of
oscillators. If we have deadtime in the measurements, ad-
Jjacent pairs cannot be averaged in an unambiguous way to
simply increase the sample time. We have to retake the
data for each new sample time—often a very time-con-
suming task. This is ancther instance where deadtime can
be a problem.

The classical variance (standard deviation squared) is
the wrong statistic for measurements of frequency stabil-
ity, because in most cases it depends on the number of data
samples. Fig. 10 plots the ratio of the standard deviation
squared for N samples to the standard deviation squared
for two samples, {62 (2,7)), which is the same as the Allan
variance, 0'32,(1.'). We can see the dependence of this stan-
dard deviation on the number of samples for various kinds
of power-law spectral densities commonly encountered as
reasonable models for many important precision oscilla-
tors. Note that ¢2(r) has the same value as the classical
variance for the classical noise case (white-noise FM).
Figure 10 shows that with the increasing length of data
the standard deviation of the common classical variance is
not well behaved.

We may combine Eqgs. (4) and (9) to obtain an equation
for 0,(7) in terms of the time-difference or time-deviation
measurements:

1/2

ay(1)= <§%-5(—.‘c(£ +20)+2x(t +1) — x(t})2> (1)
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Figure 10. The ratio of the time average of the standard devia-
tion squared for N samples over the time average of a two-sample
standard deviation squared as a function of the number of sam-
ples N. The ratio is plotted for various power-law spectral densi-
ties that commonly occur in precision oscillators. This figure
illustrates one reason why the standard deviation is not a suit-
able measure of frequency stability [4].

which for N discrete time readings, also called N,, may be
estimated as

1/2

1 1'\"—2 p
(—%i 42+ 2241 — ;)" (12)

T

2(N - 2)12 &

(7_}'{7) =

where the i integer denotes the number of the reading in
the set of N and the nominal spacing between readings is
7. If there is no deadtime in the data and the original data
were taken with a sample time 1o, a set of x; values can be
obtained by integrating the y; values: *

S
Xir1=Xi+ 70 Zyj (13)

Jj=1

Once we have the x; values, we can pick 7 in Eq (13) to be
any integer multiple m of 1q, specifically T=mzy:

1 N-2m 1/z
P T T ) o '--'m"‘gxid.-m_xi
2(N — 2m)m?2< z ~%ir2

i=1

oy(mrg) = )‘2

(14)

Equation (14), called the “max-overlap estimator,” is re-
garded as the best estimator of g (m1o).

Example 1. Find the two-sample (Allan) variance, aﬁ(r), of
the following sequence of fractional frequency fluctuation



values y;, each value averaged over one second:

y1=436x10"°  y5=447x107°

y2=461x10"%  y=896x107°

¥3=319x10"°  y;=410x107°

y4=421x10"%  y53=2308x%107°

(assume no deadtime in measurement of averages).
Since each average of the fractional frequency fluctua-

tion values is for one second, then the first variance cal-

culation will be at t=1s. We are given M =8 (eight

values); therefore, the number of pairs in sequence is

M —1="17. We have

First Differences  First Difference Squared

Data Values y,  (yis 71— 2 Yier 1= Y07
(x107%) (x1079) (x10~9
4.36 = =

4.61 0.25 0.06
3.19 —1.42 2.02
4.21 1.02 1.04
4.47 0.26 0.07
3.96 —0.51 0.26
4.10 0.14 0.02
3.08 —1.02 1.04
Sum =451

M-1
D Ore1 —yp)’=451x107"7
k=1

Therefore the Allan variance is

. 4.51 % 10710
oy(1s)= m2>_::{). - =32x1071!

and the Allan deviation is

ay(1s)=[o(18)]"*=[3.2 x 10 "2=5.6 x 10~¢

Using the same data, we can calculate the Allan vari-
ance for 1=2s by averaging pairs of adjacent values and
using these new averages as data values for the same pro-
cedure as above. For three second averages (t=3s), take
adjacent threesomes and find their averages and proceed
in a similar manner. More data must be acquired for use of
longer averaging times.

The confidence of the estimate on o0,(z) improves
nominally as the square root of the number of data
values used. In this example M =8, and the confidence
can be expressed as being no better than 1/,/8 x 100% =
35%. This is a one-sigma (1¢) uncertainty (68% confidence
interval) in the estimate for the t=1s average. We can
dramatically improve confidence using a combination of
signal processing, as discussed next.

For the particularly difficult measurement problem
of determining the frequency stability of frequency
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standards and oscillators for long averaging times,
we can use the special-purpose statistic, the estimator
of a theoretical variance 1 (“Theol”), given in native form
by [5]

1

Tflgol(m, 70, Ny) = 5
0.75(N, — m)(mg)

Ne—m (m/2)—1 3
2
X Z Z m[(xi—x[—é+%)+(xi-— m=—x; -—é+%)]
i=1 6=0 2

(15)

for m even, 10<m=<N, — 1, and 1=0.75 m1,. It has statis-
tical properties like those of the Allan variance, with the
significant enhancement that it can evaluate frequency
stability at longer averaging times than by using the Allan
definition. We can remove bias relative to “Avar” by a
composite statistic given by

TheoH(m, 19, Ny)

for 15m<£

Avar(m, 70, Ny) -
0

TheoBR(m,9,N,) for k p <m<N, —1, meven
0
(16)

where % is the largest t<7'/10 where Avar(m, 19, N,) has
sufficient confidence. In this equation TheoBR is defined

TheoBR(m, 79, Ny)

. " Avar(m =9+ 3i,19,N,)
n+1 £ Theol(m =12+ 4i, 79, Ne)

]T’h?ol(m, 20, N:),
amn

where

n= {0-];\(;- - BJ

(where || means the integer part). Equation (16) com-
putes a function that is Avar in short term and Theol in
long term.

4. SPECTRUM ANALYSIS

Another method of characterizing the noise in a signal
source is by means of spectrum analysis [6-8]. To under-
stand this approach, let’s examine the waveform shown in
Fig. 11.

Here we have a sine wave that for short instances is
perturbed by noise. Some workers loosely refer to these
types of noises as “glitches.” The waveform has a nominal
frequency over one cycle that we'll call vy (vo=1/Tp). At
times, noise causes the instantaneous frequency to differ
markedly from the nominal frequency. If a pure sine-wave
signal of frequency vg is subtracted from this waveform,
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™ ot
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Figure 11. Sine wave that is perturbed by periodic glitches.

the remainder is the sum of the noise components.
These components are of various frequencies and the
sum of their amplitudes is nearly zero except for the in-
tervals during each glitch, when their amplitudes momen-
tarily reinforce each other. This is shown graphically in
Fig. 12,

We can construct a graph plotting RMS power against
frequency for a given signal into a given load. This kind of
plot is called the power spectrum. For the waveform of
Fig. 11, the power spectrum will have a high value at vq
and lower values for the signals produced by the glitches.
Closer analysis reveals that there is a recognizable, some-
what constant, repetition rate associated with the glitches.

In fact, we can deduce that there is a significant
amount of power in another signal whose period is the
period of the glitches as shown in Fig. 12. Let’s call the
frequency of the glitches v,. Since this is the case, we will
observe a noticeable amount of power in the spectrum at v,
with an amplitude that is related to the characteristics of
the glitches. The power spectrum shown in Fig. 18 has this
feature. A predominant v component has been depicted,
but other harmonics also exist.

Some noise will cause the instantaneous frequency to
“jitter” around vy, with a distribution that is higher and
lower than vo. We thus usually find a “pedestal” associated
with vo as shown in Fig. 14.

The process of breaking a signal down into all of its
various components of frequency is called Fourier expan-
sion. In other words, the addition of all the frequency
components, called Fourier frequency components, produc-
es the original signal. The value of a Fourier frequency is
the difference between the frequency component and the
fundamental frequency. The power spectrum can be nor-
malized to unity such that the total area under the curve
equals one. The power spectrum normalized in this way is
the power spectral density.

The power spectrum of V(¢), often called the RF spec-
trum, is very useful in many applications. Unfortunately,
if we are given the RF spectrum, it is impossiblé to deter-
mine whether the power at different Fourier frequencies is
a result of amplitude fluctuations “a(t)” or phase fluctua-

1 P 1 — Noise Compone’rlt__
Vg .
ol A 1\ A A ‘
gz 4

14 | >
\“ "
. -

Sine Wave and Noisej

Figure 12. Periodic glitches are undesirable and can be separat-
ed from the desired sine wave and characterized in the frequency
domain.

T T
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Figure 13. A plot of power (into a load) vs. frequency is a power
spectrum.

tions “¢(¢).” The RF spectrum can be separated into two
independent spectra, one of which is the spectral density of
$(@).

For the purpose here, the phase fluctuation components
are the ones of interest. The spectral density of phase
fluctuations is denoted by Sy(f), where f is Fourier fre-
quency. For the frequently encountered case where the
AM power spectral density is negligibly small and the to-
tal modulation of the phase fluctuations is small (mean-
square value is much less than 1rad?), the RF spectrum
has approximately the same shape as the phase spectral
density.

However, a main difference in the representation is
that the RF spectrum includes the fundamental signal
(carrier), and the phase spectral density does not. Another
major difference is that the RF spectrum is a power spec-
tral density and is measured in units of watts/hertz. The
phase spectral density involves no “power” measurement
of the electrical signal. The units are radians?hertz. It is
tempting to think of S,() as a “power” spectral density
because in practice it is measured by passing V(¢) through
a phase detector and measuring the detector’s output
power spectrum. The measurement technique makes use
of the relation that for small deviations (d¢ <1radian)

Vins(O1?
S4(f) = [—%‘f’w} (18)

where Vems(f) is the root-mean-square noise voltage in a
1Hz bandwidth (i.e., per \/Hz) at a Fourier frequency f,
and V(f) is the sensitivity (volts per radian) at the phase
quadrature output of a phase detector that is comparing
the two oscillators. In the next section, we will lock at a
scheme for directly measuring S4(f) by determining V,(f).

SPECTRAL DENSITY

+1

POWER

|
|
:

=1
Yo

Figure 14. The power spectrum of an oscillator includes its
“noise pedestal.”



One question we might ask is “How do frequency
changes relate to phase fluctuations?” After all, it’s the
frequency stability of an oscillator that is a major consid-
eration in many applications. The frequency is equal to a
rate of change in the phase of a sine wave. This tells us
that fluctuations in an oscillator’s output frequency are
related to phase fluctuations since we must change the
rate of ¢(¢) to accomplish a shift in v(¢), the frequency at
time £. A rate of change of total ¢1(¢) is denoted by ¢p(2).
We then have

2nv(t) = () (19)

The dot denotes the mathematical operation of differenti-
ation on the function ¢ with respect to its independent
variable ¢.2 From Egs. (19) and (1) we get

2nv(t) = c_;‘JT(t) = 27vo + ¢(£)
Rearranging, we have

2mv(t) — 2mvg = G(f)

, e .

v(t) —vg = on (20)
The quantity v(£) — vo can be more conveniently denoted as
ov(¢), a change in frequency at time ¢. Equation (20) tells
us that if we differentiate the phase fluctuations ¢(¢) and
divide by 2r, we will have calculated the frequency fluc-
tuation dv(¢). Rather than specifying a frequency fluctua-
tion in terms of shift in frequency, it is useful to denote
ov(t) with respect to the nominal frequency vo. The quan-
tity ov(£)/vg is called the fractional frequency fluctuation®
at time ¢ and is signified by the variable y(¢£). We then have

Sv(t) o)
vo  2mvo

y(t) =

(21)

The fractional frequency fluctuation y(¢) is a dimension-
less quantity. When talking about frequency stability, its
appropriateness becomes clearer if we consider the follow-
ing example. Suppose that in two oscillators dv(¢) is con-
sistently equal to + 1 Hz and we have sampled this value
for many times ¢. Are the two oscillators equal in their
ability to produce their desired output frequencies? Not if
one oscillator is operating at 10Hz and the other at
10MHz. In one case, the average value of the fractional
frequency fluctuation is 1 in 10, and in the second is 1 in
10,000,000 or 1x10~7. The 10MHz oscillator is then
more accurate. If frequencies are multiplied or divided
using ideal electronics, the fractional stability is not
changed.

In the frequency domain, we can measure the spectrum
of frequency fluctuations y(¢). The spectral density of fre-

2As an analogy, the same operation relates the velocity of an ob-
ject to its acceleration.

3Some international recommendations replace “fractional” by
“normalized.”
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quency fluctuations is denoted by S,(f) and is obtained
by passing the signal from an oscillator through an ideal
FM detector and performing spectral analysis on the re-
sultant output voltage. S,(f) has dimensions of (fractional
frequency)?/Hz or Hz ! Differentiation of ¢{t) corre-
sponds to multiplication by f/vy in terms of spectral den-
sities. With further calculation, one can deduce that

"‘(- 2
s0=(L) s ©2)

Yo

We will address primarily Sy(f), that is, the spectral den-
sity of phase fluctuations. For the purpose of noise mea-
surements, Sy(f) can be measured with a straightforward,
easily duplicated equipment setup. Whether one measures
phase or frequency spectral densities is of minor impor-
tance since they bear a direct relationship. It is important,
however, to make the distinction and to use Eq. (22) when
necessary.

4.1. The Loose Phase-Locked Loop

In Section 1.1.3 we described a method of measuring
phase fluctuations between two phase-locked oscillators.
Now we will review a common procedure for measuring
S4(.

Suppose that we have a noisy oscillator. We wish to
measure the oscillator’s phase fluctuations relative to
nominal phase. One can do this by phase-locking another
oscillator (called the reference oscillator) to the test oscil-
lator, and mixing the two oscillator signals 90° out of
phase (phase quadrature). This is shown schematically in
Fig. 15. The two oscillators are at the same frequency in
the long term, as guaranteed by the phase-locked loop
(PLL). A lowpass filter (to filter the RF sum component) is
used after the mixer since the difference (baseband) signal
is the one of interest. By holding the two signals at a rel-
ative phase difference of 90°, short-term phase fluctua-
tions between the test and reference oscillators will
appear as voltage fluctuations from the mixer.

With a PLL, if we can make the servo time constant
very long, then the PLL bandwidth as a filter will be small.
This may be done by lowering the gain A, of the loop
amplifier. We want to translate the phase modulation

R o frms—
OUTPUT OF
‘@U_ REF
OSCILLATOR ;

PLL FILTER
VOLTAGE CONTROL A

OF Fnzousucr-—-l_il Fj

B

TEST
OSCILLATOR

Figure 15. The phase noise of a test oscillator is usually mesured
by a loose phase-locked loop. The test and reference oscillators
will naturally lock so that their signals have a phase difference of
90 deg. and the PLL output voltage fluctuations correspond to
phase fluctuations between the oscillators.
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spectrum to baseband spectrum so that it is easily mea-
sured on a low-frequency spectrum analyzer. With a PLL
filter, we must keep in mind that the reference oscillator
should be as good as or better than the test oscillator. This
is because the output of the PLL represents the noise from
both oscillators, and if not properly chosen, the reference
can have noise masking the noise from the test oscillator.
Often, the reference and test oscillators are of the same
type and have, therefore, approximately the same noise
levels. We can acquire a meaningful measurement by
noting that the noise we measure is from two oscillators.
Many times a good approximation is to assume that
the measured noise power is twice that associated with
either single oscillator. Sy(f) is general notation depicting
spectral density on a reciprocal hertz (Hz %) basis. The
output from PLL filter necessarily yields noise from two
oscillators.

The output of the PLL filter at Fourier frequencies
above the loop bandwidth is a voltage representing phase
fluctuations between reference and test oscillator. It is
necessary to make the time constant of the loop long com-
pared to the inverse of the lowest Fourier frequency that
we wish to measure, that is, 7.>[1/2nf(lowest)]l. This
means that if we want to measure Sy(f) down to 1Hz,
the loop time constant must be greater than 1/2n seconds.
We can measure the time constant by perturbing the
loop (momentarily disconnecting the battery is conve-
nient) and noting the time it takes for the control voltage
to reach 70% of its final value. The signal from the mixer
can then be inserted into a spectrum analyzer. A pream-
plifier may be necessary in the signal path into the spec-
trum analyzer.

The analyzer determines the mean-square voltage that
passes through the analyzer’s bandwidth centered around
a prechosen Fourier frequency f. It is desirable to normal-
ize results to a 1 Hz bandwidth. Assuming white phase
noise (white PM), this can be done by dividing the mean-
square voltage by the analyzer bandwidth in hertz. We
may have to approximate for other noise processes. [The
phase noise sideband levels will usually be indicated in
RMS volts per root hertz (V/,/Hz) on most analyzers.]

4.2. Equipment for Frequency-Domain
Stability Measurements

4.2.1. Low-Noise Mixer. This should be a high quality,
double-balanced type as shown in Fig. 16 but single-ended
types may be used. The oscillators should have well-buf-
fered outputs to be able to isolate the coupling between the
two input RF ports of the mixer. Results that are too good

Figure 16. A low noise mixer is a key component for precise
phase-noise measurements.

may be obtained if the two oscillators couple tightly via
signal injection through the input ports. We want the PLL
to control locking. One should read the specifications in
order to prevent exceeding the maximum allowable input
power to the mixer. However, it is best to operate near the
maximum for best signal-to-noise ratio out of the IF port of
the mixer, and, in some cases, it is possible to drive the
mixer into saturation without burning out the device.

4.2.2. Low-Noise DC Amplifier. The amount of gain A,
needed in the loop amplifier will depend on the amplitude
of the mixer output and the degree of varactor control in
the reference oscillator. We may need only a small amount
of gain to acquire lock. On the other hand, it may be nec-
essary to add as much as 80 dB of gain. Good low-noise DC
amplifiers are available from a number of sources, and
with cascading stages of amplification, each contributing
noise, it will be the noise of the first stage that will add
most significantly to the noise being measured. Amplifiers
with very low equivalent input noise performance
are available from many manufacturers. The response
of the amplifier should be flat from DC to the highest Fou-
rier frequency one wishes to measure. The loop time
constant is inversely related to the gain A,, and A, is
best determined experimentally by sweeping the system
with known modulation applied at the output of one os-
cillator [9].

4.2.3. Voltage-Controlled Reference Quartz Oscillator.
This oscillator should be a good one with specifications
available on its frequency-domain stability. The reference
must be no worse than the test oscillator in the frequency
domain. The varactor control should be sufficient to main-
tain phase Jock of the reference. In general, test oscillators
of moderate quality may have varactor control of as much
as 1x10~% fractional frequency change per volt. Some
provision should be available on the reference oscillator
for tuning the mean frequency over a frequency range that
will enable phase lock. Many factors enter into the choice
of the reference oscillator, and often it is convenient
to simply use two test oscillators phase-locked together.
In this way, we can assume that the noise out of the
PLL filter is no worse than 3dB greater than the noise
from each oscillator. If it is uncertain whether both oscil-
lators contribute approximately equal noise, then we
should perform measurements on three oscillators, taking
two at a time. The noisier-than-average oscillator will re-
veal itself.

4.2.4, Spectrum Analyzer. The signal analyzer should
typically be capable of measuring the noise in RMS volts
in a narrow bandwidth from near 1 Hz to the highest Fou-
rier frequency of interest. This may be 50kHz for carrier
frequencies of 10 MHz or lower and several megahertz for
microwave carrier frequencies. For voltage measuring an-
alyzers, it is typical to use units of “volts per \/Hz”. The
spectrum analyzer and any associated input amplifier will
exhibit high-frequency rolloff. The Fourier frequency at
which the voltage has dropped by 3 dB is the measurement
system bandwidth f;,, or wy, =2nf;,. This can be measured
directly with a variable signal generator.



A frequency-domain measurement setup is shown sche-
matically in Fig. 17. The component values for the lowpass
filter out of the mixzer are suitable for oscillators operating
at around 5 MHz.

The active gain element (4,) of the loop is a DC ampli-
fier, hopefully with flat frequency response, or, if not, a
known frequency response. One may replace this element
by an integrator to achieve high gain near DC and hence,
maintain better lock of the reference oscillator in long
term. Otherwise long-term drift between the reference
and test oscillators might require manual re-adjustment
of the frequency of either oscillator [1,6].

Rather than measure the spectral density of phase
fluctuations between two oscillators, it is possible to mea-
sure the phase fluctuations introduced by a device such as
an active filter or amplifier. Only a slight modification of
the existing PLL filter equipment setup is needed. The
required scheme is shown in Fig. 18.

Figure 18 is a differential phase noise measurement
setup. The output of the reference oscillator is split so that
part of the signal passes through the device under test. We
want the two signals going to the mixer to be 90° out of
phase; thus, phase fluctuations between the two input
ports cause voltage fluctuations at the output. The voltage
fluctuations then can be measured at various Fourier fre-
quencies on a spectrum analyzer.

To estimate the noise inherent in the test setup, one
can in principle bypass the device under test and compen-
sate for any change in amplitude and phase at the mixer.
In order to measure inherent test equipment noise, the
PLL filter technique must be converted to a differential
phase noise technique. It is good practice to measure the
system noise before proceeding to measurement of device
noise.

4.3. Procedure and Example

For all of these setups, at the input to the spectrum ana-
lyzer, the voltage varies as the phase fluctuations in short
term. The conversion to spectral density is

Vrms(;“f))2

and £() =%S¢(f)
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Figure 17. Typical hookup for a phase-noise measurement using
a loose PLL.

where V; is the phase sensitivity of the mixer in volts per
radian at offset frequency f. Using the setup described
previously, V, can be measured by disconnecting the
feedback loop to the varactor of the reference oscillator.
The peak voltage swing is equal to V; in units of
V/rad (volts per radian) if the resultant beat note is a
sine wave at frequency f. This may not be the case for
state-of-the-art S4(f) measurements, where one must
drive the mixer very hard to achieve low mixer noise lev-
els. Hence the output will not be a sine wave, and the
V/rad sensitivity must be estimated by the slew rate
(through zero volts) of the resultant square wave from
the mixer/amplifier.

The value for the measured S,(/f) in decibels is given by

Vems(f)
— detector voltage at f

Se(f) =20 log - ile &

Example 2. Given a PLL with two oscillators such that at
the mixer output: Vs=1V/tad with a beat frequency
f=45Hz, Vrms(45Hz)=100nV per root hertz. Solve
for S,(45Hz):

(45 Hz) = 100nV/Ha?\*_ (10°7\? rad?/Hz
¢ = 1V/rad “\1
= —14@
k) Hz ’
- rad?

7 AR = —15
£(45 Hz)=5 x 10 i

Figure 18. A differential mesurement and mea-
surement of the noise floor (by replacing the de-
vice under test with a through-cable) requires a
90 deg. phase shift at one of the mixer inputs.
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In decibels

100nV

S4(45Hz)=20 log ——— v =20 log — T0

=20(-T)= — 140dB at 45 Hz,
£(45 Hz)= — 143 dB at 45 Hz

In the example, note that the mean frequency of the os-
cillators in the PLL was not essential to computing S4().
However, in the application of S(f), the mean frequency vo
is necessary information. Along with S4(f), one should al-
ways refer to vo. In the example above, where vo=5MHz,
we have

Se(45Hz) = 1071 % vo =5 MHz

From Eq. (22), S,(f) can be computed as

45 2 rad?
S,(45 Hz) = ] JOFMAES
4 “ (5 % 10") Hz

=51%x10"%Hz !, vy=5MHz.

5. POWER-LAW NOISE PROCESSES

Power-law noise processes are models of precision oscilla-
tor noise that produce a particular slope on a spectral
density plot. We often classify these noise processes into
one of five categories. For plots of Sy(f), they are

1. Random-walk FM (random walk of frequency), S,
plot goes down as 1/f%. -

2. icker FM (flicker of frequency), S, plot goes down
as 1fS.

3. Wh;te FM (white of frequency), Sy, plot goes down as
vr=

4. Flicker PM (flicker of phase), S, plot goes down
as 1/f.

5. White PM (white of phase), S, plot is flat.

Power-law noise processes are characterized by their func-
tional dependence on Fourier frequency. Equation (22) re-
lates Sy(f) to S,(f), the spectral den51ty of frequency
fluctuations.

The spectral density plot of a typical oscillator’s output
is usually a combination of different power-law noise pro-
cesses. It is very useful and meaningful to categorize the
noise processes. The first job in evaluating a spectral den-
sity plot is to determine which type of noise exists for a
particular range of Fourier frequencies. It is possible to
have all five noise processes generated from a single os-
cillator, but in general only two or three noise processes
are dominant. Figure 19 is a graph of S,(f) showing the
five noise processes on a log-log scale. Figure 20 shows the

Spectral Density of Phase

vo =5 MHz

Random Walk FM

Flicker FM

S (f)dB

White FM
Flicker PM
'

ot | ; i 1
10° 10! 102 10° 10*Hz
Fourier Frequency (f)

Figure 19. Power-law noise is indicated by a particular slope in
the phase-noise measurement.

spectral density of phase fluctuations for a typical 5-MHz
quartz oscillator.

6. CAUSES OF NOISE TYPES IN A SIGNAL SOURCE

6.1. Power-Law Noise Processes

Section 5 pointed out the five commonly used power-law
models of noise. With respect to Sy(f), one can estimate a
straight-line slope (on a log-log scale) that corresponds to
a particular noise type. This is shown in Fig. 19,

We can make the following general remarks about
power-law noise processes:

1. Random-walk FM (1/f *) noise is difficult to measure
since it is usually very close to the carrier. “Random-
walk FM” usually relates to the oscillator’s physical
environment. If random walk FM is a predominant
feature of the spectral density plot, then mechanical
shock, vibration, temperature, or other environmen-
tal effects may be causing “random” shifts in the
carrier frequency.

2. Flicker FM (1/f %) is a noise whose physical cause is
seldom fully understood but may typically be related

Spectral Density of Phase

-110
vp= 5 MHz
120 licker FM
m -130
2 Flicker PM
& -140-
i. _‘
e \—Whne PM
—160 [ L (| 1
10° 10" 10% 108 10%Hz

Fourier Frequency (f)

Figure 20. Different power-law noises have different causes in
an oscillator’s output signal.
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to the physical resonance mechanism of an active
oscillator, or the design or choice of parts used for
the electronics, or environmental properties. Flicker
FM is common in high-quality oscillators, but may
be masked by white FM (Uf 2) or flicker PM (1/f) in
lower-quality oscillators.

3. White FM (1/f?) noise is a common type found in
passive-resonator frequency standards. These con-
tain a slave oscillator, often quartz crystal, which is
locked to a resonance feature of another device that
behaves much like a high-@ filter. Cesium and ru-
bidium standards have white FM noise characteris-
tics.

4. Flicker PM (1/f) noise may relate to a physical res-
onance mechanism in an oscillator, but it usually is
added by noisy electronics. This type of noise is com-
mon even in oscillators of the highest quality be-
cause in order to bring the signal amplitude up to a
usable level, amplifiers are used after the signal
source. Flicker PM noise may be introduced in these
stages. It may also be introduced in a frequency
multiplier. Flicker PM can be reduced with good low-
noise amplifier design (i.e., using RF negative feed-
back) and hand-selecting transistors and other elec-
tronic components.

5. White PM (f°) noise is broadband phase noise and
has little to do with the resonance mechanism. It is
‘probably produced by phenomena similar to that of
flicker PM (1/f) noise. Stages of amplification are
usually responsible for white PM noise. This noise
can be kept at a very low value with good amplifier
design, hand-selected components, the addition of
narrowband filtering at the output, or, if feasible,
increasing the power of the primary frequency
source.

6.2, Other Types of Noise

A commonly encountered type of noise from a signal
source -or measurement apparatus is the presence of

100 Hz 1000 Hz

Figure 21. 60Hz and harmonics are easily distin-
guished in a phase-noise measurement.

60-Hz AC line noise. Shown in Fig. 21 is a constant white
PM noise source with 60-, 120- and 180-Hz components
added. This kind of noise is usually caused by AC power
getting into the measurement system or the source under
test. In the plot of S4(f), we observe discrete line spectra.
Although Sy(f) is a measure of spectral density, we can
interpret the line spectra with no loss of generality, al-
though one seldom refers to spectral densities when char-
acterizing discrete lines. Figure 22 is the time-domain
representation of the same white phase modulation level
with 60-Hz noise. Note that the amplitude of g,(7) varies up
and down depending on sampling time. This is because in
the time domain the sensitivity to a periodic wave varies
directly as the sampling interval. This effect (which is an
aliasing effect) can be used as a tool for filtering out a pe-
riodic wave imposed on a signal source. By sampling in the
time domain at integer periods, we can be virtually insen-
sitive to the periodic (discrete line) term, which is a useful
strategy for removing the effect of the periodic wave.
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Figure 22. It is not easy to interpret an Allan deviation plot
when 60 Hz noise is present on an oscillating signal.
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Figure 23. An oscillator under vibration causes side- 1/100Hz 1/10Hz 1Hz 10Hz 100Hz 1000 Hz
band noise modulation that is apparent in a phase- .
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Figure 24. The Allan deviation of an oscillator under vibration
causes a general increase in the level of frequency instability.

For example, diurnal variations in data due to day-to-
day temperature, pressure, and other environmental ef-
fects can be eliminated by sampling the data once per day.
This approach is useful for data with only one periodic
term.

Figure 23 shows the kind of plot one might see of S(f)
with vibration and acoustic sensitivity in the signal source
with the device under vibration. Figure 24 shows the
translation of this effect to the time domain. ~}Slso noted
in Fig. 23 is a (typical) flicker FM behavior in the low-fre-
quency region. In the translation to time domain (Fig. 24),
the flicker FM behavior masks the white PM (with the
superimposed vibration characteristic) for long averaging
times.
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