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Generation of Nonclassical Motional States of a Trapped Atom
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We report the creation of thermal, Fock, coherent, and squeezed states of motion of a harmonically
bound 9Be1 ion. The last three states are coherently prepared from an ion which has been initially
laser cooled to the zero point of motion. The ion is trapped in the regime where the coupling between
its motional and internal states, due to applied (classical) radiation, can be described by a Jaynes-
Cummings-type interaction. With this coupling, the evolution of the internal atomic state provides a
signature of the number state distribution of the motion.

PACS numbers: 42.50.Vk, 32.80.Pj, 32.80.Qk

Nonclassical states of the harmonic oscillator associated
with a single mode of the radiation field (for example,
squeezed states) have been a subject of considerable
interest. One method for analyzing these states has been
through the dynamics of a single, two-level atom which
radiatively couples to the single mode radiation field.
This system, described by the Jaynes-Cummings model
(JCM) interaction [1,2], is important to the field of cavity
QED [3].

Nonclassical states of motion occur naturally on an
atomic scale, for example, for electrons in atoms and atoms
in molecules. On a macroscopic scale, the benefits of
nonclassical mechanical states, such as squeezed states, for
detection of gravitational waves have been appreciated for
some time [4], but so far these states have not been realized.
More recently, there has been interest in the generation
and detection of nonclassical states of motion for an atom
confined in a macroscopic, harmonic trap; for trapped ions,
see Refs. [5–16]. These states are of interest from the
standpoint of quantum measurement concepts and may
facilitate other measurements such as sensitive detection
[5,7,13] or quantum computation [17].

In this Letter we report the generation and detection of
thermal, Fock, coherent, and squeezed states of motion
of a single9Be1 ion confined in an rf (Paul) trap. We
detect the state of atomic motion by observing the evo-
lution of the atom’s internal levels [6,11] (e.g., collapse
and revival) under the influence of a JCM-type interaction
realized with the application of external (classical) fields.
Under certain conditions, the interaction Hamiltonian is
formally equivalent to the JCM Hamiltonian of cavity
QED. Here, the harmonic motion of the atom replaces the
single mode of the radiation field. The coupling can be
realized by applying quasistatic fields [7], traveling-wave
fields [6,10,13,15], or standing-wave laser fields [8,9,12].
In each case the couplingHI ­ 2m ? Esrd between in-
ternal and motional states is induced by the atom’s motion
through the spatially inhomogeneous electromagnetic field
Esrd, wherem is the atomic dipole operator.

In the present experiment, we drive stimulated Raman
transitions between two hyperfine ground states by apply-

ing a pair of traveling-wave laser beams detuned from
an excited electronic state [18]. The resulting interaction
between these internal statesjSl (denotedj #l and j "l)
and motional harmonic oscillator statesjnl andjn0l in the
x direction is given by matrix elements

kS0, n0jHI jS, nl ­ h̄VkS0, n0js1eihsa1ayd

1 s2e2ihsa1aydjS, nl (1)

in a frame which rotates at the difference frequency of the
laser beams. In this expression,s1 (s2) is the raising
(lowering) operator for the internal atomic state,ay (a) is
the harmonic oscillator raising (lowering) operator, andV

is the Raman coupling parameter [5,13,18]. The Lamb-
Dicke parameter is defined byh ; dk x0, wheredk is
the wave-vector difference of the two Raman beams along
x, andx0 ­

p
h̄y2mv is the spread of thejn ­ 0l wave

function in the harmonic well of frequencyv.
The ordern0 2 n of the vibrational coupling is selected

by tuning the Raman beam difference frequency. For ex-
ample, by tuning to the first red sideband in the Raman
spectrum, we resonantly enhance the term which drives
transitions between statesj #, nl and j ", n 2 1l. In the
Lamb-Dicke limit [dk

p
kx2l ø 1, x ­ x0sa 1 ayd], the

exponentials in Eq. (1) can be expanded to lowest order,
resulting in the operatorhsas1 1 ays2d, which corre-
sponds to the usual JCM operator. We can easily control
the strength and duration of the interaction by varying the
intensity and time the lasers are applied. By choosing other
laser tunings, we can select other operators such as the anti-
JCM operatorhsays1 1 as2d at the first blue sideband
(which is not present in cavity QED) or the “two-phonon”
JCM operatorsh2y2d sa2s1 1 ay2s2d at the second red
sideband. In this experiment, the higher-order terms in
the expansion of the exponential in Eq. (1) must also be
taken into account [19]. Reference [20] has explicitly dis-
cussed the consequences of these higher-order terms on the
trapped ion internal and motional state dynamics.

Additional differences from cavity-QED experiments
include the methods of state generation available (de-
scribed below) and the relatively small decoherence. In
all but the case of thermal states, we coherently prepare
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the states starting with an ion which has been laser cooled
to thejn ­ 0l ground state of motion [18]; this cooling is
crucial to preserve the consistency of the generated states.
Decoherence in these experiments is small enough that the
atomic population coherence survives for many Rabi cy-
cles of the JCM interaction—the “strong coupling” regime
of cavity QED [3].

A single 9Be1 ion is stored in a strong rf Paul trap [21]
with a pseudopotential oscillation frequency alongx of
vy2p ø 11.2 MHz. The ion is cooled using sideband
cooling with stimulated Raman transitions [18] between
the 2S1y2 (F ­ 2, mF ­ 2) and 2S1y2 (F ­ 1, mF ­ 1)
hyperfine ground states, which are denoted byj #l and
j "l, respectively, and are separated byø1.25 GHz. This
prepares the ion in thejS ­#, n ­ 0l state more than 95%
of the time. The Raman beam wave vectors point at
45± to thex axis with their wave-vector difference nearly
along thex axis of the trap [the Lamb-Dicke parameter
is h ­ 0.202s5d], so the Raman transitions are highly
insensitive to motion in they or z directions. The beams
are detunedø12 GHz to the red of the2P1y2 excited state
with approximately 0.5 mW of power in each beam, so that
the Raman transition coupling isVy2p ø 500 kHz, and
the vibrational structure is clearly resolved.

Once the ion is prepared in thej #, 0l state, we cre-
ate the desired motional state as described below. We
then acquire the signature of the motional state as follows.
The Raman beams are tuned to the first blue sideband
and applied for a timet. The population of thej #l level
is then measured by applyings1-polarized radiation on
the j #l ! 2P3y2 cycling transition and detecting the fluo-
rescence [18]. This experiment is repeated at a rate of a
few kilohertz, whilet is slowly stepped, accumulating the
probabilityP#std of occupation inj #l.

Fock states of motion can in principle be produced by
quantum jumps [9,16], adiabatic passage [12], or trapping
states [14]; here we use an alternate technique. Since the
ion is initially cooled to thej #, 0l Fock state, we create
higher-n Fock states by simply applying a sequence of
Rabi p pulses of laser radiation on the blue sideband,
red sideband, or carrier. For example, thej ", 2l state is
prepared by using blue sideband, red sideband, and carrier
p pulses in succession, so that the ion steps through the
statesj #, 0l, j ", 1l, j #, 2l, andj ", 2l.

We create a series of Fock states,j #, nl, and recordP#std.
The expected signal isP#std ­ cos2sVn,n11td exps2gntd,
whereVn,n11 is the Rabi frequency andgn is the deco-
herence rate between levelsjnl and jn 1 1l. The mea-
suredP#std for an initial j #, n ­ 0l Fock state is shown
in Fig. 1(a) and fitted by this equation, yieldingV0,1 ­
94s1d kHz andg0 ­ 11.9s4d kHz. Note thatV0,1 is much
greater thang0, satisfying the strong coupling condition.
We believe the decoherence is due to technical problems—
primarily intensity fluctuations of the laser beams and
instabilities of the trap drive frequency and voltage ampli-
tude. The observed increase ofgn with n [we find gn ø

FIG. 1. (a) P#std for an initial j #, 0l Fock state driven by
a JCM-type interaction provided by tuning the stimulated
Raman beams to the first blue sideband. The solid line
is a fit by an exponentially decaying sinusoid. (b) The
relative Rabi frequenciesVn,n11yV0,1 vs the prepared Fock
state numbern. The lines represent the predictions of the
nonlinear JCM for certain Lamb-Dicke parameters, showing
very good agreement with the known Lamb-Dicke parameter
h ­ 0.202s5d. The h ø 1 line corresponds to the Lamb-
Dicke limit: Vn,n11yV0,1 ­

p
n 1 1.

g0sn 1 1d0.7] is qualitatively consistent with this view.
In the Lamb-Dicke limit the Rabi frequency between lev-
els j #, nl and j ", n 1 1l is Vn,n11 ­

p
n 1 1 hV. If

the Lamb-Dicke limit is not satisfied, nonlinear effects in
the interaction modify these rates [19,20]. The measured
Rabi frequency ratiosVn,n11yV0,1 are plotted in Fig. 1(b),
showing very good agreement with the JCM for the trap’s
Lamb-Dicke parameterh ­ 0.202.

When the ion’s motion is not in a Fock state,P#std
shows a more complicated structure. The motional state
is characterized by a density operator whose diagonal
elements have a number distributionPn leading to

P#std ­
X
n­0

Pn cos2sVn,n11tde2gnt . (2)

For a thermal distributionPn ­ Nfnys1 1 ndgn, where
N is a normalization constant andn is the average vibra-
tional quantum number. By performing Doppler cooling
on the j #l ! P3y2 cycling transition [18], we generate a
thermal state of motion [22]. The value ofn can be con-
trolled by the Doppler detuning. An example ofP#std data
for a thermal state of motion is given in Fig. 2. To demon-
strate consistency with a thermal state of motion, the time-
domain data are fitted by Eq. (2) with a thermal population
distribution forPn. The signal scale andn are allowed to
vary in the fit. Values for the base Rabi frequencyV0,1 and
base decay rateg0 (from which the other rates are scaled
using the Fock state data) are obtained from a separate trace
of P#std for an initial j #, 0l state, as in Fig. 1(a). For Fig. 2,
the fit yieldsn ­ 1.3 6 0.1. The inset shows the results of

1797



VOLUME 76, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 MARCH 1996

FIG. 2. P#std for a thermal state. The data (points) are fitted
(line) by a superposition of Fock states withPn given by a
thermal state distribution. The fit allowsn to vary, finding
1.3 6 0.1. The inset shows the decomposition of the data
onto the Fock state components (bars) with a fit (line) by the
expected exponential distribution, yielding1.5 6 0.1.

an independent analysis (the frequency-domain analysis).
In this case, we directly extract the populations of the vari-
ous jnl levels. Since the Fock state parametersVn,n11
and gn are well characterized, the time-domain data can
be decomposed into Fock-state components. Equation (2)
is linear in thePn, so we use singular-value decomposi-
tion [23] to extract the probabilities, shown in the inset
to Fig. 2. The probabilities are fitted by an exponential,
yielding n ­ 1.5 6 0.1. Finally, we independently mea-
suren by comparing the size of the red and blue sidebands
[18], yielding n ­ 1.5 6 0.2.

A coherent state of motion of the ion corresponds
to a displaced zero-point wave packet oscillating in the
potential well. The distribution among Fock states is
Poissonian,Pn ­ snne2ndyn!. As predicted by the JCM,
the internal-state evolutionP#std will undergo quantum
collapses and revivals [24]. These revivals are a purely
quantum effect due to the discrete energy levels and the
narrow distribution of states [2,24].

Coherent states of ion motion can be produced from
the jn ­ 0l state by a spatially uniform classical driving
field [25], by a “moving standing wave” [26], by pairs of
standing waves [8], or by a sudden shift of the trap center
[5]. We have used the first two methods; for the data
shown here we use the first. For the classical drive, we
apply a sinusoidally varying potential at the trap oscillation
frequency on one of the trap compensation electrodes [21]
for a fixed time (typically10 ms). In Fig. 3 we present
an example ofP#std after creation of a coherent state of
motion, exhibiting collapse and revival. The time-domain
data are fitted by Eq. (2) using a Poissonian distribution
and allowing onlyn to vary. All other parameters are
measured from a separate trace similar to Fig. 1(a). The
inset shows the probabilities of the Fock components,
extracted using the frequency-domain analysis described
above. These amplitudes display the expected Poissonian
dependence onn. The observed revival for higher-n

FIG. 3. P#std for a coherent state, showing collapse and
revival. The data are fitted by a coherent state distribution,
yielding n ­ 3.1 6 0.1. The inset shows the decomposition of
the data onto the expected Fock state components, fitted by a
Poissonian distribution, yieldingn ­ 2.9 6 0.1.

coherent states is attenuated due to the progressively faster
decay rates of the higher-n Fock states, and for states with
n * 6 we are unable to see the revival.

A coherent state has a definite phase relationship
between the Fock state components. The signalP#std,
however, does not contain this phase information. To
demonstrate the phase coherence of the created states, we
apply a second pulse of classical driving force, which co-
herently returns the ion to thejn ­ 0l state, provided the
pulse is of the same amplitude as the first and 180± out of
phase with the coherent state. As expected, the return of
the ion to thejn ­ 0l state is very sensitive to the phase
of the second pulse. However, we are able to reverse
the coherent state and return the ion tojn ­ 0l more
than 85% of the time, as indicated by a single frequency
component in a subsequent measurement ofP#std.

A “vacuum squeezed state” of motion can be created by
a parametric drive [5], by a combination of standing- and
traveling-wave laser fields [8], or by a nonadiabatic drop in
the trap spring constant [5]. Here we irradiate thejn ­ 0l
ion with two Raman beams which differ in frequency
by 2v, driving Raman transitions between the even-n
levels within the same hyperfine state. The interaction can
also be thought of as a parametric drive induced by an
optical dipole force modulated at2v [26]. The squeeze
parameterb (defined as the factor by which the variance of
the squeezed quadrature is decreased) grows exponentially
with the driving time. Figure 4 showsP#std for a squeezed
state prepared in this way. The data are fitted by a vacuum
squeezed state distribution, allowing onlyb to vary. The
fit of the data in Fig. 4 demonstrates consistency with a
squeezed state and findsb ­ 40 6 10, which corresponds
to n ø 7.1.

The population distribution for a vacuum squeezed
state is relatively flat and is restricted to the even states,
P2n ­ Ns2nd! stanhrd2nys2nn!d2, with b ­ exps2rd. A
squeezed state withb ­ 40 has 16% of the population in
states aboven ­ 20. The Rabi frequency differences of
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FIG. 4. P#std for a squeezed state. The data are fitted by a
squeezed state population distribution, findingb ø 40 6 10,
which corresponds ton ø 7.1.

these high-n levels are small [see Fig. 1(b)], and with the
inclusion of nonlinear effects [19,20] the Rabi frequencies
begin to decrease withn after n ­ 20. The levels can
no longer be distinguished, and the frequency-domain
analysis cannot be used to extract the level populations.

In summary, we have created thermal, Fock, coherent,
and squeezed states of motion of a trapped ion and exam-
ined these states through the evolution of the ion internal
state P#std induced by a (nonlinear) JCM-type interac-
tion. This experiment demonstrates the utility of a trapped
ion for the creation of nonclassical states of motion and
investigations of the dynamics of Jaynes-Cummings-type
interactions. Given a suitable coupling, it should be pos-
sible to transfer these nonclassical state properties to
other harmonic oscillators including macroscopic oscilla-
tors [5]. In addition to work to reduce the decoherence,
further efforts will involve the creation of arbitrary quan-
tum states of motion, including macroscopic superposition
states (Schrödinger’s cat states) [3], investigation of the
“two-phonon” Jaynes-Cummings model [27,28], quantum
state endoscopy [29], and quantum state tomography [30].
The same interaction can be extended to prepare correlated
internal states of two or more trapped ions for sensitive de-
tection [7,13] or quantum computation [17].

This work is supported by the U.S. Office of Naval
Research and the U.S. Army Research Office. We ac-
knowledge important contributions by J. C. Bergquist and
helpful comments on the manuscript by M. Stephens, C. S.
Wood, and M. Young.

[1] E. T. Jaynes and F. W. Cummings, Proc. IEEE51, 89
(1963).

[2] B. W. Shore and P. L. Knight, J. Mod. Opt.40, 1195
(1993).

[3] Cavity Quantum Electrodynamics,edited by P. R. Berman
(Academic Press, Boston, MA, 1994).

[4] J. N. Hollenhorst, Phys. Rev. D19, 1669 (1979).
[5] D. J. Heinzen and D. J. Wineland, Phys. Rev. A42, 2977

(1990).
[6] C. A. Blockley, D. F. Walls, and H. Risken, Europhys.

Lett. 17, 509 (1992).
[7] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore,

and D. J. Heinzen, Phys. Rev. A46, R6797 (1992).
[8] J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Phys.

Rev. Lett.70, 556 (1993).
[9] J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phys.

Rev. Lett.70, 762 (1993).
[10] H. Zeng and F. Lin, Phys. Rev. A48, 2393 (1993).
[11] J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phys.

Rev. A 49, 1202 (1994).
[12] J. I. Cirac, R. Blatt, and P. Zoller, Phys. Rev. A49, R3174

(1994).
[13] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J.

Heinzen, Phys. Rev. A50, 67 (1994).
[14] R. Blatt, J. I. Cirac, and P. Zoller, Phys. Rev. A52, 518

(1995).
[15] H. Zeng and F. Lin, Phys. Rev. A52, 809 (1995).
[16] J. Eschner, B. Appasamy, and P. E. Toschek, Phys. Rev.

Lett. 74, 2435 (1995).
[17] J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091 (1995);

C. Monroe, D. M. Meekhof, B. E. King, W. Itano, and
D. J. Wineland, Phys. Rev. Lett.75, 4714 (1995).

[18] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts,
W. M. Itano, D. J. Wineland, and P. L. Gould, Phys. Rev.
Lett. 75, 4011 (1995).

[19] See Eq. (31) in D. J. Wineland and W. M. Itano, Phys.
Rev. A 20, 1521 (1979).

[20] W. Vogel and R. L. de Matos Filho, Phys. Rev. A52,
4214 (1995).

[21] S. Jefferts, C. Monroe, E. Bell, and D. J. Wineland, Phys.
Rev. A 51, 3112 (1995).

[22] S. Stenholm, Rev. Mod. Phys.58, 699 (1986).
[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes (Cambridge University
Press, Cambridge, 1992).

[24] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-
Mondragon, Phys. Rev. Lett.44, 1323 (1980).

[25] P. Carruthers and M. M. Nieto, Am. J. Phys.7, 537 (1965).
[26] D. J. Wineland, J. C. Bergquist, J. J. Bollinger, W. M.

Itano, F. L. Moore, J. M. Gilligan, M. G. Raizen, D. J.
Heinzen, C. S. Weimer, and C. H. Manney, inLaser Ma-
nipulation of Atoms and Ions,edited by E. Arimondo,
W. D. Phillips, and F. Strumia (North-Holland, Amster-
dam, 1992), p. 553.

[27] P. L. Knight, Phys. Scr.T12, 51 (1986).
[28] R. L. de Matos Filho and W. Vogel, Phys. Rev. A50,

R1988 (1994).
[29] P. J. Bardroff, E. Mayr, and W. P. Schleich, Phys. Rev. A

51, 4963 (1995), and references therein.
[30] K. Vogel and H. Risken, Phys. Rev. A40, 2847 (1989);

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,
Phys. Rev. Lett. 70, 1244 (1993); T. J. Dunn, I. A.
Walmsley, and S. Mukamel, Phys. Rev. Lett.74, 884
(1995); S. Wallentowitz and W. Vogel, Phys. Rev. Lett.
75, 2932 (1995); J. F. Poyatos, R. Walser, J. I. Cirac,
P. Zoller, and R. Blatt (to be published).

1799


