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Experimental Determination of the Motional Quantum State of a Trapped Atom
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We reconstruct the density matrices and Wigner functions for various quantum states of motion
of a harmonically boundBe' ion. We apply coherent displacements of different amplitudes and
phases to the input state and measure the number state populations. Using novel reconstruction
schemes we independently determine both the density matrix in the number state basis and the
Wigner function. These reconstructions are sensitive indicators of decoherence in the system.
[S0031-9007(96)01713-9]
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In quantum mechanics, once the density matrix of atom. A unique feature of our experiment is that we are
system is determined, all knowable information is at handable to prepare a variety of nonclassical input states [9]
All the elusive quantum properties, like superpositionswhich can, for example, exhibit negative values of the
and decoherence are reflected in it. Although it is wellWigner function. To our knowledge these are the first
established that the wave function or density matrix of experimental reconstructions revealing a negative Wigner
single quantum system cannot be determined in generdiinction in position-momentum space.
multiple measurements on an ensemble of identically In order to measure the complete state of motion, we
prepared quantum systems can reveal their density matrigontrollably displace the input state to several different

Early work on determination of the quantum state inlocations in phase space. Specifically, a coherent displace-
such an ensemble was reviewed by Royer [1]. In quanment [9,14]U(—a) = Ut(a) = expla®a — aat) (—a
tum optics, numerous reconstruction schemes have beénused for convenience below) is first applied to the input
proposed, based on the measurement of probability disnotional state. Here anda® are the lowering and raising
tributions in different representations [2]. More recently,operators of the harmonically bound atom (frequency
proposals for determining the motional state of a trapped,), while « is the complex parameter characterizing the
atom have been published [3—6], partially inspired by thecoherent amplitude and phase. We then apply radiation to
analogy between cavity QED and a trapped atom interacthe atom for a time, which induces a resonant exchange
ing with laser fields [7-9]. between stated |)|k) and | )|k + 1) in a Jaynes-

Few experiments have succeeded in determining th€ummings-type interaction [7—9]. Herkl) and | 1)
density matrices or Wigner functions of quantum systemsdenote two selected internal states, #ds the motional
Angular momentum density matrices were measured irigenstate with energfw,(k + 1/2). For eacha and
collisionally produced hydrogen [10], the Wigner function time ¢ the populationP,(¢, «) of the| |) level is then mea-
and density matrix of a mode of light was experimentallysured by monitoring the fluorescence produced in driv-
mapped by optical homodyne tomography [11,12], and théng a resonant dipole cycling transition [9]. The internal
Wigner function of the vibrational degree of freedom of astate atr = 0 is always prepared to ble|), so the signal
diatomic molecule was reconstructed [13]. In this Letteraveraged over many measurements is [15]
we present the theory and experimental demonstration o
of two novel schemes that allow us to reconstruct both p(; o) = 1 1+ Y 0ul@)cod2Qyps1t)e 7 L,
the density matrix in the number state basis and the =0
Wigner function of the motional state of a single trapped ()
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(where Q+; are the Rabi frequencies ang, their To reconstruct the density matrixin the number state
experimentally determined decay constants). Because thmse, we use the relation

Rabi frequency betweehl) |k) and| 1) |k + 1) depends

onk [9], the populationg) («) of the motional eigenstates

after the displacement can be extracted [7-9,16]. We Or(a) = kUt (@)pU(a) |k). 2
repeat this scheme for several magnitudes and phases

of the coherent displacement and finally reconstruct the

density matrix and the Wigner function from the measured\ote thatQy(« )/ is the Q-quasi-probability distribution
displaced population®;(«a). [4]. Rewriting (2) we get

0u(@) = 7 0l Ut @)pUla) (@10 = el (@ — @)fpla’ — a)¥la) =

Hlaft $ S (e e

. k! n,m=0 j,j'=0
X (=1 T YW + L0+ ) pa e 3)

n!'m!

To separate the contributions of different matrix elementst provides a direct method to obtain the Wigner function
we may displace the state along a circle, at the pointa in phase space, without the need to measure
a, = |alexdi(m/N)p], (4)  atother values of. This also distinguishes the method
wherepe{—N,...,N — 1}. The number of anglesV on ;rom'prect:)ed.lng expenrpgents th?t dete_rmmed the nghner
that circle determines the maximum number statg, — unction by inversion of integral equations (tomography)

N — 1 included in the reconstruction. This allows us to [11,13].

. . : "

perform a discrete Fourier transform of Eq. (3) evaluated In our experiment, the trapped atom Is a sintjie .

at the valuesy,, and we obtain the matrix equations lon, stqred in a rf Paul trap [19] with a pseudopotential
P oscillation frequency ofv, /27 =~ 11.2 MHz [20]. The

o 1 —il(m/N)p ion is laser cooled using sideband cooling with stimulated
O =5y _Z Qilap)e Raman transitions [21] between th&, » (F = 2, mp =
Z_iN —2) and Sy, (F =1, mp = —1) hyperfine ground
— Z 71(<ln)pn il (5) states, which are denoted by) and| 1), respectively, and
n=max(0.—1) ’ are separated by approximately 1.25 GHz.

The preparation of coherent and number (Fock) states
of motion starting from the ground state is described in
[9]. The coherent displacement we need for the recon-

with matrix elements

P min(k,n) min(k,/+n
e || |01|2k (k,n) ( )

]((l) _ ¢ e Z |a|2(nfj7j’)+l g ) ] - - ]
n k! £ £ struction mapping is provided by a spatially uniform clas-
S0 0 NEDLT sical driving field [14,19] at the trap oscillation frequency.
X (= 1)Ky () ( .n)'"' — , (6) The rf oscillators that create and displace the state are
P+ = ) = ) phase locked to control their relative phase. Different dis-

for every diagonap,_,+, of the density matrix. To keep Placements are realized by varying the amplitude and the
the matrix dimension finite, a cutoff for the maximum Phase of the displacement oscillator. For every displace-
in Eq. (5) is introduced, based on the magnitude of thénentea, we recordP|(z, a). Q,(a) can be found from the
input state. For an unknown input state an upper boung€asured traces with a singular-value decomposition [9].
on n may be extracted from the populatiog (). If 1O deter_rmne ;he gmphtudezl of each displacement, the
these are negligible far's higher than a certaiky,, and ~Same driving field is applied to the = 0) ground state,

all displacementsy, they are negligible in the input state and the resulting collapse and revival trace is fitted to that
as well, and it is convenient to truncate Eq. (5nat, =  ©f @ coherent state [9]. S

kmax- The resulting matrix equation is overcomplete for The accuracy of the reconstruction is limited by the un-
somel, but the diagonalg,,,+; can still be reconstructed certainty in the applied displacements, the errors in the de-

by a general linear least-squares method [17]. termination of the displaced populations, and decoherence
The Wigner function for every point in the complex Cjurlrjg the measurement. The value of the W|gner func-
plane can be determined by the simple sum [16,18], tion is fou_nd by asum with simple error propagation rules.

) & The density matrix is constructed by a linear least-squares

W(a) = — Z(_l)n O, (a). (7)  method, and it is straightforward to calculate a covariance

T n=0 matrix [17]. As the size of the input state increases, deco-

In practice, the sum is carried out only to a finitg,x, as  herence and the relative accuracy of the displacements be-
described above. In contrast to our density matrix methodome more critical, thereby increasing their uncertainties.
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Magnitudes

(a)

FIG. 2. Experimental amplitudes,,, and phase® (p,,) of
the number-state density matrix elements of|@ = 0.67
coherent state. The state was displaced|®Yy = 0.92, for
N = 4in Eq. (4).

ib)

signature. This view is further supported by the fact that
farther off-diagonal elements seem to decrease faster than
direct neighbors of the diagonal. The reconstructed Wig-
ner function of a coherent state with amplituged =~ 1.5
is shown in Fig. 3.

Next we created a coherent superposition|of= 0)
and |[n = 2) number states. This state is ideally suited
to demonstrate the sensitivity of the reconstruction to co-
herences. The only nonzero off-diagonal elements should
be pg, and pyy, with a magnitude oflpp| = |p2| =
JPoopz = 0.5 for a superposition with about equal proba-
bility of being measured in thg: = 0) or |n = 2) state.
In the reconstruction shown in Fig. 4 the populatigns
andp,, are somewhat smaller, due to imperfections in the

FIG. 1. (a) Reconstructed number-state density matrix ampli-
tudesp,.., for an approximatgn = 1) number state. The coher-
ent reconstruction displacement amplitude Wa$ = 1.15(3).

The number of relative phas@s = 4 in EqQ. (4), SOnm.x = 3.

(b) (color) Surface and contour plots of the Wigner function
W(a) of the |n = 1) number state. The plotted points are the
result of fitting a linear interpolation between the actual data
points to a 0.1 by 0.1 grid. The octagonal shape is an artifact
of the eight measured phases per radius. The white contour
representdV(a) = 0. The negative values around the origin
highlight the nonclassical character of this state.

In Fig. 1, we show the reconstruction of both the number
state density matrix (a) and Wigner function (b) of an
approximate|n = 1) number state. The large negative
part of the Wigner function around the origin highlights
the fact that thén = 1) number state is nonclassical.

In contrast, the state closest to a classical state of motion

in a harmonic oscillator is a coherent state. As one ext!C- 3(color). Surface and contour plots of the reconstructed

| h ited and tructed h ¢ tWigner function of a coherent state. The plotted points
ample, we have excited and reconstructed a coherent stalgy” the result of fitting a linear interpolation between the

with amplitude|3| =~ 0.67. The experimental amplitude actual data points to a 0.13 by 0.13 grid. The approximately
and phase of the number state density matrix are depictegaussian minimum uncertainty wave packet is centered around
in Fig. 2. The off-diagonal elements are generally smalleg coherent amplitude of about 1.5 from the origin. The half

; idth at half maximum is about 0.6, in accordance with the
f(;r the experrllmenttthflr: Welwoul(: etl)f],pef:t gromtthfa theﬁr))rl;llinimum uncertainty half width of/(1/2)In(2) = 0.59. To
Or a pure coherent state. In part, this IS due 1o deco ers'uppress artifacts in the Wigner function summation, we have
ence during the measurement, so the reconstruction shoWgeraged ove,,,x = 5 andnm., = 6 truncations, as suggested

a mixed state character rather than a pure coherent staig M. Collett.
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mine the states of an electromagnetic field (using avail-
able techniques) [23], or in neutral atom traps where dipole
forces could provide the drive for a coherent displacement
[9,22]. Another straightforward extension of this work in
ion traps would be to perform tomography on entangled
motional and internal states of two or more trapped ions, by
combining the motional state reconstruction with Ramsey-
type and correlation experiments.

This work is supported by the U.S. National Secu-
rity Agency, the Office of Naval Research, and the
Army Research Office. D.L. acknowledges a Deutsche
Forschungsgemeinschaft research grant. D. M. M. is sup-
ported by a N.R.C. postdoctoral fellowship. We thank
FIG._4. Reconstructed dgnsity matrix amplitudes of an apyy, Vogel for pointing out the connection of the Wigner
B{gg‘é@fﬁ;% |\/Z ((|)"79=f32 N ’_|”4Tn2E>215t(3t)e- TThh::rtﬁgﬁt\lljv(?:sdésf- function to the displaced populations and J.I. Cirac and
the coherences indicate that the reconstructed density matrix E Zoller for st!mu!atlng d'SCUSS'OnSI We acknowledge
close to that of a pure state. important contributions by J. Bergquist and helpful com-

ments on the manuscript by M. Young, J.J. Bollinger,
P. Huang, and M. Holland.
preparation, but the coherence has the expected value of Note added—After submission of this work we have
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In contrast to the above, a thermal state should exhibit néunction of atoms in an interferometer [24], and that
coherences. In the experiment such a state was prepar€gpatrny et al. [25] propose a very similar method to
by (only) Doppler cooling the ion [9]. The reconstruction reconstruct the density matrix of a light field in the
of the resulting thermal state with mean occupation numbenumber-state basis.
n = 1.3 is depicted in Fig. 5. As expected, there are
no coherences, and the diagonal, which gives the number

state occupation, shows an exponential behavior within the 4. Ph
experimental errors. [1] A. Royer, Found. Physl9, 3 (1989).

_[2] K. Vogel and H. Risken, Phys. Rev. 40, 2847 (1989).
In summary, we have created number, thermal, co S. Wallentowitz and W. Vogel, Phys. Rev. Lefs, 2932

herent, and number-state superposition states of motior{?’] 1995).

of a trapped atom and determined both density matrice§u) j F. poyatos, R. Walser, J. 1. Cirac, P. Zoller, and R. Blatt,
in the number-state basis and Wigner functions of these ~ phys. Rev. A53, R1966 (1996).

states. The methods are suitable for arbitrary quantums] C. D'Helon and G.J. Milburn, Phys. Rev. A4, R25
states of motion, including mesoscopic superposition states  (1996).

(Schrodinger’s cat states) [22] and could be a useful tool[6] P.J. Bardroff, C. Leichtle, G. Schrade, and W. P. Schleich
to study decoherence in these states. These methods could (to be published).

also be implemented in cavity-QED experiments to deter-[7] C.A. Blockley, D.F. Walls, and H. Risken, Europhys.
Lett. 77, 509 (1992).

[8] J.I. Cirac, R. Blatt, A.S. Parkins, and P. Zoller, Phys.
Rev. A49, 1202 (1994).

[9] D. M. Meekhof, C. Monroe, B.E. King, W. M. Itano, and
D.J. Wineland, Phys. Rev. Leff6, 1796 (1996).

[10] J.R. Ashburn, R.A. Cline, P.J. M. van der Burgt, W.B.
Westerveldt, and J.S. Risley, Phys. Rev.44, 2407
(1990).

[11] D.T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,
Phys. Rev. Lett70, 1244 (1993).

[12] G. Breitenbach, T. Mdiller, S.F. Pereira, J.Ph. Poizat,
S. Schiller, and J. Mlynek, J. Opt. Soc.1R, 2304 (1995).

[13] T.J. Dunn, I.A. Walmsley, and S. Mukamel, Phys. Rev.
Lett. 74, 884 (1995).

[14] P. Carruthers and M. M. Nieto, Am. J. Phys537 (1965).

[15] Equation (2) of Ref. [9] is in error and should be replaced

FIG. 5. Reconstructed density matrix of/a= 1.3 thermal by '59- 1) he_re. . . .
state. This state was displaced hy| = 0.78, for N = 4 [16] In this experiment we can consider the internal atomic

in Eq. (4). As one would expect for a thermal state, no state to be the detector. If we neglect noise and de-
coherences are present within the experimental uncertainties coherence in the mapping operations, the motional state
and the populations drop exponentially for higher information is mapped according to Eq. (1) with unit

4284




VOLUME 77, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NVEMBER 1996

(17]

(18]

(19]

efficiency onto the| |) state. Therefore, to have unit [20] For the parameters of this experiment, the effects of
detection efficiency in the experiment, it is not necessary rf “micromotion” are small and can be neglected. A

to detect the| |) state with unit efficiency. The analogy thorough treatment which includes the micromotion is
with photon detection would be a 100% efficient detector described in Ref. [6].

which is read out only sporadically. [21] C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts,
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and W. M. Itano, D.J. Wineland, and P.L. Gould, Phys. Rev.
B. P. FlanneryNumerical Recipe¢Cambridge University Lett. 75, 4011 (1995).

Press, Cambridge, 1986), Chap. 14.3. [22] C. Monroe, D. M. Meekhof, B. E. King, and D.J. Wine-
A. Royer, Phys. Rev. Lett52, 1064 (1984); H. Moya- land, Scienc®72 1131 (1996).

Cessa and P.L. Knight, Phys. Rev. 48, 2479 (1993); [23] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hag-
S. Wallentowitz and W. Vogel, Phys. Rev. B3, 4528 ley, J. M. Raymond, and S. Haroche, Phys. Rev. L#4}.
(1996); K. Banaszek and K. Wodkiewicz, Phys. Rev. Lett. 1800 (1996).

76, 4344 (1996). [24] J. Mlynek (private communication).

S. Jefferts, C. Monroe, E. Bell, and D. J. Wineland, Phys.[25] T. Opatrny and D.-G. Welsch (to be published).
Rev. A51, 3112 (1995).

4285



