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Abstract
An international Advisory Group on Uncertainties has published guidelines
for the statistical analysis of a simple key comparison carried out by the
Consultative Committees of the International Committee of Weights and
Measures (CIPM) where a travelling standard of a stable value is circulated
among the participants. We discuss several concerns regarding these
guidelines. Then, we describe a statistical model based on the Guide to the
Expression of Uncertainty in Measurement to establish the key comparison
reference value, the degrees of equivalence, and their associated standard
uncertainties on the basis of the data submitted by the participants. The
proposed statistical model applies to all those CIPM key comparisons where
the submitted results are mutually comparable and appropriate for
determining the key comparison reference value and the submitted
uncertainties are sufficiently reliable.

1. Introduction

Key comparisons are interlaboratory comparisons between
national metrology institutes (NMIs) [1]. Key comparisons
carried out by the Consultative Committees (CCs) of the
Comité International des Poids et Mesures (International
Committee of Weights and Measures, CIPM) or the Bureau
International des Poids et Mesures (BIPM)1 are referred to as
CIPM key comparisons. The outputs of the statistical analysis
of a CIPM key comparison are the key comparison reference
value, the degrees of equivalence, and their associated
uncertainties [1]. An international Advisory Group on
Uncertainties2 commissioned by the director of the BIPM has
published guidelines for the statistical analysis of a CIPM key
comparison [2]. We refer to these guidelines as the Statistical
Guidelines paper to distinguish it from the previously
published Guidelines for CIPM key comparisons [3]. The
Statistical Guidelines paper applies to a simple CIPM key
comparison where a travelling standard having good short-
term stability and stability during transport is circulated among

1 The BIPM operates under the exclusive supervision of the CIPM.
‘The CIPM is the world’s highest authority in the field of measure-
ment science (i.e. metrology),’ (http://physics.nist.gov/cuu/Uncertainty/
international1.html).
2 The Advisory Group consisted of five experts from the NMIs of Denmark,
Germany, Italy, UK, and USA.

the participating NMI laboratories and each NMI laboratory
realizes its measurement independent of the others. The
Statistical Guidelines paper notes that complications such as
the following may occur: some or all of the measurements
are mutually dependent, the travelling standard is not stable,
the pattern of comparison is complicated, the reference value
is provided in advance by some means, several travelling
standards are circulated, or the measurements are made
at various settings of a parameter such as wavelength or
frequency. The Advisory Group on Uncertainties intends
to develop further guidelines to cover these and other
complications. Many CIPM key comparisons are not simple.
So the Statistical Guidelines paper does not apply to many
CIPM key comparisons.

The Statistical Guidelines paper consists of two statistical
procedures, A and B. Procedure A applies to consistent
laboratory results; it is based on frequentist statistics.
Procedure B applies when the laboratory results are
inconsistent; it is based on the concept of a measurement
equation introduced by the International Organization for
Standardization (ISO) Guide to the Expression of Uncertainty
in Measurement [4]. Procedure A begins with a chi-squared
test to assess the consistency of the results. When the
results are judged to be consistent, the Statistical Guidelines
paper recommends continuing with procedure A. When the
results are judged to be inconsistent, the NMI laboratories
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with inconsistent results are given a chance to self-investigate
the inconsistent results and given the option of withdrawing
from the comparison, subject to the protocol and limitations
of the available time and resources. When the inconsistent
results are not eliminated, the Statistical Guidelines paper
recommends procedure B. Procedure A recommends as
the key comparison reference value the weighted mean of
laboratory results where the weights are inversely proportional
to the squares of submitted standard uncertainties (variances).
Procedure B recommends as the key comparison reference
value an expected median determined through numerical
simulation.

The Statistical Guidelines paper does not state the
statistical models that underlie its procedures A and B and
it does not discuss statistical interpretation of the outputs
of these procedures. We note the following concerns
regarding the Statistical Guidelines paper. The expected values
of the sampling distributions of all degrees of equivalence,
whether small or large, determined from procedure A are
zero; therefore, they do not quantitate the agreements and
disagreements between the results, defeating their purpose.
The chi-squared test does not justify the frequentist statistics
model that underlies the use of the weighted mean as the
key comparison reference value. The uncertainties associated
with the key comparison reference values, determined
using procedures A and B, are underestimates because the
corresponding measurement equations are incomplete.

This paper describes a systematic laboratory effects model
for the statistical analysis of CIPM key comparisons based
on the ISO Guide. Sections 2 and 3 are, respectively, a
review and a criticism of the Statistical Guidelines paper. In
section 4, we present a brief description of the systematic
laboratory effects model proposed in [5]. Then in section 5, we
outline a statistical analysis to determine the key comparison
reference value and its associated uncertainty based on the
systematic laboratory effects model. In section 6, we discuss a
useful statistical method for identifying discrepant results and
uncertainties. In section 7, we illustrate the proposed statistical
analysis using the data from a supplementary comparison of
cryogenic radiometers. A summary appears in section 8.

2. Review of the Statistical Guidelines paper

The Statistical Guidelines paper applies to a simple CIPM key
comparison where a travelling standard serves as the common
measurand for all participating NMI laboratories and the
results are statistically independent. The value of the travelling
standard is believed to be constant during the comparison. We
use the symbol Y for the value of the common measurand.
The data from a CIPM key comparison consist of the paired
results and standard uncertainties [x1, u(x1)], . . . , [xn, u(xn)]
submitted by the participating NMI laboratories3. The
results x1, . . . , xn relate to the national measurement standards
maintained by the NMI laboratories. The outputs of a
statistical analysis of the data from a CIPM key comparison
are the key comparison reference value xR, the degree of
equivalence di = xi − xR of the result xi , the degree of

3 The result xi includes corrections for recognized systematic effects applied
in the laboratory labelled i and the uncertainty u(xi) includes the uncertainties
associated with the corrections for i = 1, 2, . . . , n.

equivalence di,j = xi − xj of xi and xj , and their associated
standard uncertainties u(xR), u(di), and u(di,j ), respectively,
for i, j = 1, 2, . . . , n and i �= j [1]. We refer to the
results x1, . . . , xn as laboratory results. We use the symbols
X1, . . . , Xn for the expected values, E(x1), . . . , E(xn), of the
sampling distributions of x1, . . . , xn, respectively4. We refer
to the expected values X1, . . . , Xn as the laboratory expected
values. We use the symbols σ1, . . . , σn for the true standard
deviations, S(x1), . . . , S(xn), of the sampling distributions of
x1, . . . , xn, respectively. The uncertainties u(x1), . . . , u(xn)

are estimates of σ1, . . . , σn, respectively.
Procedure A recommends the weighted mean xW =∑

i wixi/
∑

i wi , where wi = 1/u2(xi) for i = 1, 2, . . . , n,
as the key comparison reference value, xR, and the
expression u(xW) = 1/

√
[
∑

i wi] as u(xR). This
recommendation is based on the assumption that the submitted
variances, u2(x1), . . . , u

2(xn), are equal to the true variances,
σ 2

1 , . . . , σ 2
n , of the sampling distributions of x1, . . . , xn,

respectively. Procedure A recommends the following
expressions for the degrees of equivalence and their associated
uncertainties: di = xi − xW and u(di) = √

[u2(xi)−u2(xW)],
di,j = xi − xj and u(di,j ) = √

[u2(xi) + u2(xj )], for i,
j = 1, 2, . . . , n and i �= j .

Procedure B recommends a simulated expected median,
xM, and an uncertainty, u(xM), determined through numerical
simulation as the key comparison reference value, xR, and
uncertainty, u(xR), respectively. Procedure B is as follows.
The laboratory expected values, X1, . . . , Xn, are regarded
as random variables having state-of-knowledge probability
distributions with expected values x1, . . . , xn and standard
deviations u(x1), . . . , u(xn), respectively. Procedure B
assumes that the joint probability distribution of the vector
(X1, . . . , Xn) is multivariate normal (Gaussian) or some other
fully specified distribution. Generate one million (106)

simulated random sample vectors (x(r)
1 , . . . , x(r)

n ) from the
assumed joint probability distribution for (X1, . . . , Xn), where
r is an index for the sample number. Calculate the median
m(r) = median(x

(r)
1 , . . . , x(r)

n ) for each random sample vector.
Then xM is the arithmetic mean and u(xM) is the standard
deviation of the one million simulated medians, m(r). The
degrees of equivalence di and di,j are di = xi − xM and di,j =
xi − xj , for i, j = 1, 2, . . . , n and i �= j . The corresponding
uncertainties, u(di) and u(di,j ), are calculated from the one
million simulated random sample vectors (x(r)

1 , . . . , x(r)
n ).

3. Criticism of the Statistical Guidelines paper

Here are our concerns regarding the Statistical Guidelines
paper.

3.1. Interpretation of the degrees of equivalence

Procedure A is based on the following model from frequentist
statistics. The results are regarded as realizations of the random
variables x1, . . . , xn, where

xi = Y + ei (1)

4 We use the same symbols, x1, . . . , xn, for both the random variables having
sampling distributions and the results that are regarded as realizations of the
random variables.
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and the sampling distributions of e1, . . . , en are assumed to
be mutually independent and normal with expected values
zero and variances u2(x1), . . . , u

2(xn), respectively. Thus
the expected value, E(xi), is equal to Y and the variance,
V (xi), is equal to u2(xi), for i = 1, 2, . . . , n. Reference [5]
refers to model (1) as a non-existent laboratory effects model
to distinguish it from those statistical models that allow for
the possibility of laboratory effects (biases) in the results
x1, . . . , xn. The least-squares estimate of the parameter Y of
the non-existent laboratory effects model (1) is the weighted
mean xW = ∑

i wixi/
∑

i wi , where wi = 1/u2(xi) for
i = 1, 2, . . . , n. According to this model the expected value
and the standard deviation5 of the sampling distribution of
xW are Y and u(xW) = 1/

√
[
∑

i wi], respectively. Thus,
the key comparison reference value, xR, based on model (1)
is xW and u(xR) is u(xW). The corresponding degrees of
equivalence are di = xi − xW and di,j = xi − xj , for
i, j = 1, 2, . . . , n and i �= j . According to model (1), the
uncertainty u(di) is

√
[u2(xi) − u2(xW)] and the uncertainty

u(di,j ) is
√

[u2(xi) + u2(xj )], for i, j = 1, 2, . . . , n and i �= j .
In the uncertainty u(di), the sign is negative because of the
covariance6 between xi and xW.

In practice, the standard uncertainties, u(x1), . . . , u(xn),
submitted by the participating NMI laboratories are statistical
estimates of the true standard deviations, σ1, . . . , σn,
respectively. So the uncertainties u(x1), . . . , u(xn) are
uncertain ([4], section E.4). The expression 1/

√
[
∑

i wi] does
not include a component of uncertainty for the uncertainties
in the submitted uncertainties, u(x1), . . . , u(xn). Therefore,
u(xW) = 1/

√
[
∑

i wi] is an underestimate of the true standard
deviation of the weighted mean, xW [6, 7].

Let us discuss the statistical interpretation of the key
comparison reference value determined from the non-existent
laboratory effects model (1). According to the non-existent
laboratory effects model, the key comparison reference value,
xR, is a realization of a random variable7 with a sampling
distribution having the expected value Y and standard deviation
u(xR) = u(xW) = 1/

√
[
∑

i wi]. The interval [xR ± 2u(xR)]
determined using the non-existent laboratory effects model is
a confidence interval for Y computed from the data x1, . . . , xn

and u(x1), . . . , u(xn). Its coverage property is expressed as a
confidence level. The confidence level is not a statement about
the computed interval [xR ± 2u(xR)], which either includes or
does not include the unknown value, Y , of the measurand. It is
a statement about the statistical procedure used to compute the
interval [xR±2u(xR)]. Imagine that the CIPM key comparison
could be repeated infinitely many times under exactly the same
conditions using exactly the same instruments and artefacts.
Now imagine that throughout these repetitions exactly the
same sampling distributions continued to apply to the random
variables x1, . . . , xn. The confidence level is the fraction of the

5 E(xW) = ∑
i wiE(xi)/

∑
i wi = Y (

∑
i wi/

∑
i wi) = Y . If wi =

1/u2(xi ) = 1/V (xi) for i = 1, 2, . . . , n, then the variance of xW is
V (xW) = ∑

i w2
i V (xi )/(

∑
i wi)

2 = ∑
i wi/(

∑
i wi)

2 = 1/
∑

i wi .
6 The covariance between xi and xW is C(xi , xW) = wiV (xi)/

∑
i wi =

1/
∑

i wi = V (xW). Therefore, the variance of di is V (xi − xW) =
V (xi)+V (xW)−2C(xi , xW) = V (xi)+V (xW)−2V (xW) = V (xi)−V (xW).
7 The symbol xR represents both the random variable and its realized value
computed from the data x1, . . . , xn and u(x1), . . . , u(xn). Likewise, the
symbols d1, . . . , dn and d1,2, . . . , dn−1,n represent both the random variables
and their realized values.

infinitely many hypothetical intervals, such as [xR ± 2u(xR)],
that would include Y [8]. The ISO Guide interprets xR and
u(xR) as the expected value and standard deviation of a state-
of-knowledge distribution for Y . The coverage probability
of the interval [xR ± 2u(xR)] is the fraction of a state-of-
knowledge distribution represented by xR and u(xR) that is
encompassed by this interval ([4], section 6.2.2). Therefore,
the statistical interpretation of xR, u(xR), and the interval
[xR ± 2u(xR)] based on the non-existent laboratory effects
model (1) does not agree with the ISO Guide.

Now let us discuss the statistical interpretation of the
degrees of equivalence determined from the non-existent
laboratory effects model (1). According to the non-existent
laboratory effects model, the expected values of the sampling
distributions of x1, . . . , xn, and xR are all equal to Y .
Therefore, the expected values of the sampling distributions
of all degrees of equivalence di = xi − xR and di,j = xi − xj

are zero, for i, j = 1, 2, . . . , n and i �= j . This implies
that all computed degrees of equivalence, whether small or
large, are statistical estimates of zero. Therefore, the degrees
of equivalence determined from the non-existent laboratory
effects model (1) do not quantitate the agreements and
disagreements between the results, defeating their purpose. In
particular, according to this model, all degrees of equivalence
published in the key comparison database (KCDB) [9] are
estimates of zero.

3.2. Limitation of the chi-squared test

The chi-squared test checks whether the data x1, . . . , xn and
u(x1), . . . , u(xn) fit the frequentist statistics model xi =
µ + ei , for i = 1, 2, . . . , n, where (i) the parameter µ is
any unknown constant, (ii) the errors, e1, . . . , en, are random
variables with sampling distributions, (iii) the sampling
distributions of e1, . . . , en are mutually independent and
normal (Gaussian) with expected values zero and standard
deviations σ1, . . . , σn, respectively, and (iv) the submitted
standard uncertainties, u(x1), . . . , u(xn), are assumed to be
the true standard deviations, σ1, . . . , σn, respectively [10].

The chi-squared test requires that all submitted
uncertainties, u(x1), . . . , u(xn), must be sufficiently reliable8

to be regarded as equal to the true standard deviations,
σ1, . . . , σn, of the sampling distributions of x1, . . . , xn. When
this requirement is not met, the chi-squared test is not justified.

When the datax1, . . . , xn andu(x1), . . . , u(xn) reasonably
fit the model that underlies the chi-squared test, we say that the
results are consistent in view of the submitted uncertainties,
u(x1), . . . , u(xn). That is, the dispersion of the results
x1, . . . , xn is not more than what can reasonably be attributed
to the uncertainties u(x1), . . . , u(xn). When the data do
not reasonably fit the model, we say that the results are
inconsistent. That is, the dispersion of x1, . . . , xn is more than
what can reasonably be attributed to u(x1), . . . , u(xn).

The non-existent laboratory effects model, which
underlies the use of the weighted mean as the key comparison
reference value, represents the following two-part assumption:
the laboratory expected values, X1, . . . , Xn, are all equal
and the common value of X1, . . . , Xn is equal to Y . When

8 In the context of uncertainty in measurement, the adjective ‘reliable’ refers
to the quality of an expression of uncertainty.
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the results are judged to be consistent using the chi-squared
test, we may say that the data do not refute the assumption
that X1, . . . , Xn are all equal to some unknown constant µ.
The consistency of results does not imply that the unknown
common expected value, µ, is equal to the unknown value, Y ,
of the measurand. Therefore, the second part of the assumption
is not justified. Thus the chi-squared test does not justify the
non-existent laboratory effects model.

The relationship between the result xi and the unknown
value Y of the measurand depends on the relationship between
the unknown laboratory expected value, Xi , and Y , for
i = 1, 2, . . . , n. The difference Xi − Y is the unknown
(additive) bias9 in xi for i = 1, 2, . . . , n. We refer to the bias
Xi − Y as the laboratory effect. The chi-squared test does not
justify the assumption that the laboratory effects (X1 −Y ), . . .,
(Xn − Y ) are all zero.

In the next section, the laboratory effects (X1 − Y ), . . .,
(Xn − Y ) are regarded as unknown constants that may be
different for different laboratories. The bias in some of the
results x1, . . . , xn may be negligible or zero. However, to
the extent that the laboratory expected values, X1, . . . , Xn,
and the value Y of the measurand are unknown, it may not be
possible to identify such results with certainty.

3.3. Underestimation of uncertainty

For the key comparison reference value, xR, and uncertainty,
u(xR), to have a statistical interpretation that agrees with the
ISO Guide, they must be determined from a measurement
equation. All input and output quantities involved in a
measurement equation are regarded as variables with state-
of-knowledge probability distributions. Following the ISO
Guide, we use the symbol Y for both the unknown constant
value of the measurand and a variable with a state-of-
knowledge probability distribution about the value of the
measurand. Likewise, we use the symbols X1, . . . , Xn for
both the unknown laboratory expected values and variables
with state-of-knowledge probability distributions about the
laboratory expected values. In the ISO Guide, the data
x1, . . . , xn and u(x1), . . . , u(xn) are regarded as known
constants [4, 8]. The Statistical Guidelines paper assumes that
the pairs [x1, u(x1)], . . . , [xn, u(xn)] are the expected values
and standard deviations of normal distributions attributed to
Y by the participating NMI laboratories. The expected values
and/or standard deviations of these distributions are different.
So these are different state-of-knowledge distributions for Y .
Our interpretation is that the result xi is the expected value,
E(Xi), and the standard uncertainty u(xi) is the standard
deviation S(Xi) of a state-of-knowledge distribution for the
laboratory expected value Xi , for i = 1, 2, . . . , n.

Suppose x is a result of measurement for Y and that
its associated standard uncertainty is u(x). Suppose the
expected value, E(x), of the sampling distribution of x is
X. The difference (X − Y ) is the bias10 in x. The bias is
an unknown constant. Before publication of the ISO Guide,

9 We use the word ‘bias’ as a synonym for systematic error. This definition
of bias (systematic error) is based on the ISO Guide (section B.2.22). In some
applications, multiplicative bias, Xi/Y , may be more appropriate.
10 The bias in a result of measurement x is defined with respect to the sampling
distribution associated with x, whether it is a frequentist or a Bayesian point
estimate.

there was no generally accepted approach to account for the
uncertainty arising from bias. The ISO Guide recommends that
the result, x, should be corrected to counter its possible bias
(X − Y ) and the uncertainty associated with the correction
should be included in the combined standard uncertainty
associated with the corrected result. A measurement equation
is required to incorporate a correction for possible bias in x.
The measurement equation that corresponds to the bias (X−Y )

is Y = X + C, where C is a variable with a probability
distribution representing the state-of-knowledge about the
expression (Y − X) for the negative bias. In the measurement
equation Y = X + C, the quantities X and Y are regarded
as variables with probability distributions representing states
of knowledge about the unknown expected value, X, and the
unknown value, Y , of the measurand. The ISO Guide identifies
the result, x, and uncertainty, u(x), with the expected value,
E(X), and standard deviation, S(X), of a state-of-knowledge
distribution11 for X, i.e. E(X) = x and S(X) = u(x).
A distribution for C is specified independent of the state-of-
knowledge distribution for X after the expected value, x, and
standard deviation, u(x), have been specified. Suppose the
expected value, E(C), and standard deviation, S(C), of a state-
of-knowledge distribution for C are c and u(c), respectively.
Then a corrected combined result (CCR),y, forY is determined
by substituting the expected value x for the variable X and
the expected value c for the variable C in the measurement
equation Y = X + C. Thus y = x + c. That is, the
correction applied to the result x to counter its possible bias
is c. The combined standard uncertainty, u(y), associated
with y is determined by propagating the variances V (X) =
u2(x), V (C) = u2(c), and the covariance C(X, C). Since the
state-of-knowledge distributions for X and C are independent,
the covariance C(X, C) is zero; therefore the propagation
formula for the measurement equation Y = X + C is u2(y) =
u2(x) + u2(c). Thus u(y) = √

[u2(x) + u2(c)]. Following
the ISO Guide, the result y and standard uncertainty u(y) are
interpreted as the expected value and standard deviation of a
state-of-knowledge distribution for Y .

Whenever the bias in a result of measurement with respect
to the value of the measurand is unknown, a correction
variable should be included in the measurement equation for
that measurand. When the bias is believed to be small,
the correction variable may have a zero expected value
and a small12 standard deviation. A measurement equation
that ignores the correction variable for an unknown bias is
incomplete. The uncertainty determined from an incomplete
measurement equation is an underestimate.

Let XW = ∑
i wiXi/

∑
i wi be a linear combination

of X1, . . . , Xn, where wi = 1/u2(xi) for i = 1, 2, . . . , n.
When X1, . . . , Xn are regarded as variables with state-
of-knowledge distributions, XW is a variable with a
state-of-knowledge distribution. The expected value of
XW is xW = ∑

i wixi/
∑

i wi . When the variables
X1, . . . , Xn are mutually independent, the standard deviation

11 As discussed in [8], this interpretation is justified when x and u(x) are the
expected value and standard deviation of a Bayesian posterior distribution for
X or are regarded as their approximations.
12 A zero expected value and a zero standard deviation for the correction
variable would imply that the bias is known to be zero. A claim of zero bias
may be unjustified. To the extent that the expected value and the value of the
measurand are unknown, one cannot be certain that the bias is zero.
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of XW is u(xW) = 1/
√

[
∑

i wi]. The measurement equation
that corresponds to the use of xW as xR and u(xW) as u(xR)

is Y = XW. This measurement equation is incomplete
because it does not include an input variable to represent a
correction for possible bias in xW with respect to Y ; therefore,
u(xW) = 1/

√
[
∑

i wi] is an underestimate of the uncertainty
associated with xW. The bias in xW is the difference (XW −Y ),
where XW is regarded as the expected value of the sampling
distribution of xW and Y is the value of the measurand. To the
extent that XW and Y are unknown, one cannot be certain that
the bias in xW is zero.

The Statistical Guidelines paper does not discuss
statistical interpretation of the standard uncertainty, u(xR),
and the uncertainty interval [xR ± 2u(xR)] determined from
its procedures A and B. In accordance with the ISO Guide,
xR is the expected value and u(xR) is the standard deviation
of a state-of-knowledge distribution for the values that could
reasonably be attributed to Y . Thus the interval [xR ± 2u(xR)]
should include a large fraction, called coverage probability,
of the values that could reasonably be attributed to Y . The
coverage probability of [xR ± 2u(xR)] is at least 75% for any
distribution with expected value xR and standard deviation
u(xR) [8]. The coverage probability jumps to 95% for a
normal distribution and 100% for a rectangular distribution.
According to [1], ‘Participation in a key comparison is
open to laboratories having the highest technical competence
and experience, normally the member laboratories of the
appropriate CC’. Thus x1, . . . , xn are values attributed to Y by
competent laboratories. That is, x1, . . . , xn are plausible values
for Y . Therefore, the interval [xR ± 2u(xR)] should exclude
none or at most a small fraction of the results x1, . . . , xn.
When the number, n, of laboratories is large, the interval
[xW ± 2u(xW)] may exclude13 a large fraction of the results,
x1, . . . , xn. Therefore, the interval [xW ± 2u(xW)] may be
unreasonably narrow for the uncertainty interval [xR ±2u(xR)]
associated with the key comparison reference value, xR [10].

The use of a simulated expected median, xM, as the key
comparison reference value, xR, and u(xM) as the uncertainty,
u(xR), is based on the measurement equation Y = XM, where
XM = m(X1, . . . , Xn) is the median function of the variables
X1, . . . , Xn. This measurement equation does not include an
input variable to represent a correction for possible bias in xM.
Therefore, the measurement equation Y = XM is incomplete.
Consequently, the uncertainty, u(xM), is an underestimate. The
bias in xM is the difference between the expected value of
the sampling distribution of xM and the value, Y , of the
measurand. The sampling distribution of xM describes the
relative frequencies of occurrence for all possible values of xM

if the CIPM key comparison could be repeated infinitely many
times under exactly the same conditions. To the extent that the
expected value of xM and the value Y are unknown, one cannot
be certain that the bias in xM is zero.

4. Systematic laboratory effects model

We will briefly describe a systematic laboratory effects model
based on the ISO Guide. This model was proposed in [5]

13 As n increases, the expression u(xW) = 1/
√

[
∑

i wi ] decreases. Therefore,
the fraction of results x1, . . . , xn excluded by the interval [xW ± 2u(xW)]
increases. In the limit as n tends to infinity, the interval [xW ± 2u(xW)] would
exclude all the results x1, . . . , xn.

for the statistical analysis of a simple CIPM key comparison.
In this model, the laboratory effects (biases), Xi − Y , for
i = 1, 2, . . . , n, are unknown constants. Consider a combined
result of the form

∑
i aixi , where ai � 0 and

∑
i ai = 1

that is used as a preliminary estimate14 for the value Y of
the common measurand. We refer to the preliminary estimate
as an uncorrected combined result (UCR) and denote it by
xUCR = ∑

i aixi . If ai = wi/
∑

i wi , then xUCR is the
weighted mean xW = ∑

i wixi/
∑

i wi , where wi = 1/u2(xi)

for i = 1, 2, . . . , n. If ai = 1/n for i = 1, 2, . . . , n, then
xUCR is the arithmetic mean xA = ∑

i xi/n. Let XUCR =
E(

∑
i aixi) = ∑

i aiE(xi) = ∑
i aiXi be the expected value

of the sampling distribution of xUCR. The result, xUCR, is
subject to the bias (XUCR − Y ). The ISO Guide recommends
that the result, xUCR, should be corrected to counter its possible
bias and the uncertainty associated with the correction should
be included in the combined standard uncertainty associated
with the corrected result. The bias (XUCR − Y ) is an
unknown constant. The correction for bias, denoted by C, is a
variable with a state-of-knowledge probability distribution15.
Suppose the expected value and standard deviation of a
state-of-knowledge probability distribution for the correction
variable C are c and u(c), respectively. Then the correction
applied to the result xUCR to counter its possible bias is c and
the standard uncertainty associated with the correction is u(c).
In order to specify c and u(c), one is free to use any reasonable
distribution for C that has a finite expected value and a finite
standard deviation. For example, one could use a rectangular
distribution on the interval (−α, +α) for some non-negative α

specified by scientific judgment [4]. In that case c = 0 and
u(c) = α/

√
3. The uncertainty u(c) can be made small or

large by the choice of α.
A measurement equation for Y is required to incorporate

a correction for possible bias in a result of measurement. The
measurement equation that corresponds to the bias (XUCR −Y )

in xUCR is Y = XUCR + C. It suggests the following model for
the value, Y , of the measurand:

E(Xi) = xi, S(Xi) = u(xi),

XUCR =
∑

i

aiXi, Y = XUCR + C,
(2)

where a1, . . . , an are constants such that ai � 0 and
∑

i ai = 1.
In this model, X1, . . . , Xn, XUCR, C, and Y are regarded as
variables with state-of-knowledge distributions. The expected
value and standard deviation16 of Xi are the given constants,
xi and u(xi), respectively, for i = 1, 2, . . . , n. A state-of-
knowledge distribution for the correction variable C is defined

14 The results x1, . . . , xn are values attributed to Y by competent laboratories.
It is, therefore, not unreasonable to assume that the value Y is either somewhere
in the range of results x1, . . . , xn or in the vicinity of this range. The
specifications ai � 0 and

∑
i ai = 1 associated with

∑
i aixi represent this

assumption.
15 A state-of-knowledge distribution for the correction C implies a
corresponding state-of-knowledge distribution for the bias (XUCR −Y ). Since
the input quantity that goes in the measurement equation is the correction
variable, not the bias, we do not deal with a state-of-knowledge distribution
for the bias (XUCR − Y ).
16 Ideally, the result, xi , and uncertainty, u(xi), should be the expected value
and standard deviation of a Bayesian posterior distribution for Xi . A Bayesian
uncertainty has the advantage that it has no statistical uncertainty arising from
a small number of measurements [8].
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independent of the state-of-knowledge distributions for the
variables X1, . . . , Xn after the expected values and standard
deviations of the latter have been specified. Therefore, Xi

and C are independently distributed, for i = 1, 2, . . . , n.
Consequently, XUCR and C are independently distributed. The
model (2) is referred to as a systematic laboratory effects model
[5]. The systematic laboratory effects model (2) allows for
the possibility that not all pairs of the variables X1, . . . , Xn

may have independent state-of-knowledge distributions [5].
Suppose r(xi, xj ) is the correlation coefficient between Xi and
Xj for i, j = 1, . . . , n and i �= j . Then the expected value
and standard deviation of a state-of-knowledge distribution
for XUCR are, respectively, E(XUCR) = ∑

i aiE(Xi) =∑
i aixi = xUCR and S(XUCR) = √

[
∑

i a
2
i u

2(xi) +
2

∑
(i<j) aiaju(xi)u(xj )r(xi, xj )] = u(xUCR). The

parameters xUCR and u(xUCR) represent the centrality and
spread of a state-of-knowledge distribution for the expected
value, XUCR. The parameters c and u(c) represent the
centrality and spread of a state-of-knowledge distribution for
the correction C for possible bias in xUCR. The CCR for
Y determined from the systematic laboratory effects model
(2) is y = xUCR + c, and its associated standard uncertainty
is u(y) = √

[u2(xUCR) + u2(c)]. Thus the key comparison
reference value, xR, based on model (2) is y and u(xR) is u(y).

Following the ISO Guide, we interpret xR and u(xR)

as the expected value and standard deviation of a state-of-
knowledge distribution for Y based on the data x1, . . . , xn

and u(x1), . . . , u(xn). The coverage probability of the
interval [xR ± 2u(xR)] is the fraction of a state-of-knowledge
distribution for Y represented by xR and u(xR) that is
encompassed by this interval [4, 8].

The degrees of equivalence determined from the
systematic laboratory effects model are di = xi −xR = xi −y

and di,j = xi − xj for i, j = 1, 2, . . . , n and i �= j .
The results, x1, . . . , xn, and y are the expected values; and
the uncertainties, u(x1), . . . , u(xn) and u(y) are the standard
deviations of X1, . . . , Xn and Y . Therefore, the degree of
equivalence, di , is the expected value of a state-of-knowledge
distribution17 for the laboratory effect (bias), Xi − Y , for
i = 1, 2, . . . , n. The degree of equivalence, di,j , is the expected
value of a state-of-knowledge distribution for Xi − Xj , the
difference between the laboratory expected values Xi and Xj ,
for i, j = 1, 2, . . . , n and i �= j . The uncertainty, u(di), is the
standard deviation18 of Xi − Y , and the uncertainty, u(di,j ), is
the standard deviation of Xi − Xj , for i, j = 1, 2, . . . , n and
i �= j . Thus the degrees of equivalence determined from the
systematic laboratory effects model quantitate the agreements
and disagreements between the laboratory results. Therefore,
the systematic laboratory effects model is suitable for the data
analysis of a simple CIPM key comparison.

17 A state-of-knowledge distribution for the bias Xi − Y requires a state-of-
knowledge distribution for Y , which in turn requires a correction for bias in
a UCR xUCR =

∑
i aixi for Y .

18 The standard deviation of Xi − Y depends on the covariance between
Xi and Y for i = 1, 2, . . . , n. Since Y = XUCR + C = ∑

i aiXi + C

and the variable C is distributed independent of the variables X1, . . . , Xn,
the covariances C(Xi, Y ), for i = 1, 2, . . . , n, can be determined from the
variances and covariances of X1, . . . , Xn. Then u(di) = √

[V (Xi − Y )],
where the variance V (Xi − Y ) is equal to V (Xi) + V (Y ) − 2 × C(Xi, Y ).
When the variables X1, . . . , Xn are independent, C(Xi, Y ) = ai ×V (Xi) and
V (Y ) = ∑

i a2
i V (Xi).

Note 1. The measurement equation Y = XUCR + C is defined
by the chosen linear function xUCR = ∑

i aixi , where ai � 0
and

∑
i ai = 1. Suppose the state-of-knowledge distributions

for X1, . . . , Xn are independent. The systematic laboratory
effects model is based on the assumption that the submitted
uncertainties, u(x1), . . . , u(xn), are all sufficiently reliable.
It can be shown that the standard deviation S(XUCR) =√

[
∑

i a
2
i u

2(xi)] is minimum when ai = wi/
∑

i wi , where
wi = 1/u2(xi) for i = 1, 2, . . . , n. Therefore, one may
prefer the measurement equation Y = XW + C, where
XW = ∑

i wiXi/
∑

i wi . When one is not certain that
u(x1), . . . , u(xn) are all sufficiently reliable, even thought this
assumption is made, the measurement equation Y = XA + C,
where XA = ∑

i Xi/n, may be preferred.

4.1. Probability distribution for the correction variable

Reference [11] addressed the special case where n = 2 and
xUCR = xA, which is in the middle of the two results x1 and x2.
This work proposed for C a rectangular distribution on the
interval (−α, +α), where α = |(x1 − x2)/2| = |x(1) − xA| =
|x(2) − xA|, x(1) = min {x1, x2}, and x(2) = max {x1, x2};
and a normal distribution with c = 0 and u(c) such that
2u(c) = α = |x(1) − xA| = |x(2) − xA|. When n is more
than two, one may consider a rectangular distribution on the
interval (−α, +α), where α = max {|x(1) − xUCR|, |x(n) −
xUCR|}, x(1) = min {x1, . . . , xn}, and x(n) = max {x1, . . . , xn};
and a normal distribution with c = 0 and u(c) such that
2u(c) = α = max {|x(1) − xUCR|, |x(n) − xUCR|}. When
n is more than two, xUCR may not be in the middle of the
results x1, . . . , xn. Therefore, the rectangular distribution
with limits ±α and the normal distribution with c = 0 and
2u(c) = α may not fit the dispersion of results x1, . . . , xn.
The uncertainty u(c) = α/

√
3 determined from a rectangular

distribution on the interval (−α, +α), where α = max {|x(1) −
xUCR|, |x(n) − xUCR|}, may be too large. The bias in xUCR

is necessarily bounded; therefore, a normal distribution that
is unbounded is an awkward probability distribution for C.
Also, a normal distribution may give too much weight to
the results near xUCR and too little weight to the results
far from xUCR. Therefore, in [10], we proposed for C a
rectangular distribution on the interval (−α1, +α2), where
−α1 = (x(1) − xUCR) and α2 = (x(2) − xUCR). The expected
value and standard deviation of a rectangular distribution on
the interval (−α1, +α2) are (α2 − α1)/2 and (α1 + α2)/

√
12,

respectively. We also proposed, in [10], an asymmetric
triangular distribution on the interval (−α1, +α2), where
−α1 = (x(1) − xUCR), α2 = (x(2) − xUCR), and the peak is at
zero. The expected value and standard deviation of a triangular
distribution on the interval (−α1, +α2) with the peak at zero are
(α2 − α1)/3 and

√
[(α1 − α2)

2/18 + (α1α2)/6], respectively.
Some of our colleagues criticized the asymmetric triangular
distribution because it is determined by the extreme results,
x(1) and x(n), which are sometimes suspected to be in error. So
in [5], we proposed a discrete equal-probability distribution
for C that is determined by all of the results x1, . . . , xn.
The correction c and uncertainty u(c) based on the discrete
equal-probability distribution are c = E(C) = xA − xUCR and
u(c) = S(C) = √

[
∑

i (xi − xA)2/n], respectively. When the
discrete equal-probability distribution is used to specify c and
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u(c), then y = xUCR + xA − xUCR = xA. Thus the CCR, y,
determined through the discrete equal-probability distribution
is the arithmetic mean, xA, regardless of the linear function that
is used as the UCR xUCR. When xUCR is the arithmetic mean,
xA, the correction c is zero. In that case, y = xUCR = xA.

4.2. A mixture distribution for the value of the measurand

Reference [12] suggests that the key comparison reference
value, xR, and uncertainty, u(xR), may be determined from
a mixture distribution for the value, Y , of the measurand
based on the data [x1, u(x1)], . . . , [xn, u(xn)]. The result,
xi , and uncertainty, u(xi), are interpreted as the expected
value and standard deviation of a probability distribution
attributed to Y in the laboratory labelled i for i = 1, 2, . . . , n.
The key comparison reference value, xR, and uncertainty,
u(xR), are the expected value and standard deviation of a
combined probability distribution attributed to Y . Suppose
the probability density function (PDF) represented by xi and
u(xi) is pi(y) and the PDF represented by xR and u(xR) is
p(y). The PDF p(y) may be defined as a linear combination
p(y) = ∑

i κipi(y) of the PDFs pi(y), where κ1, . . . , κn

are non-negative weights attributed to p1(y), . . . , pn(y) such
that

∑
i κi = 1. The combined probability distribution

with PDF p(y) = ∑
i κipi(y) is referred to as a mixture

distribution. The expected value and standard deviation of
p(y) are

∑
i κixi and

√
[
∑

i κiu
2(xi) +

∑
i κi(xi − ∑

i κixi)
2]

[13]. Reference [12] suggests that xR and u(xR) may be
defined by setting κi = 1/n for i = 1, 2, . . . , n. Then
xR = ∑

i xi/n = xA, u(xR) = √
[(1/n)

∑
i u

2(xi) +∑
i (xi − xA)2/n], and the interval [xR ± 2u(xR)] represents

an approximate range of the values that could reasonably be
attributed to Y based on the data [x1, u(x1)], . . . , [xn, u(xn)].
The corresponding expressions19 for xR and u(xR) determined
from the systematic laboratory effects model are xR = xA

and u(xR) = √
[(1/n2)

∑
i u

2(xi) +
∑

i (xi − xA)2/n]. The
only difference between these two expressions for u(xR) is
the coefficient of

∑
i u

2(xi), which is 1/n from the mixture
distribution and 1/n2 from the systematic laboratory effects
model20. The systematic laboratory effects model is more
flexible than a mixture distribution because the UCR may
be any linear combination xUCR = ∑

i aixi of the results
x1, . . . , xn, where ai � 0 and

∑
i ai = 1, and the correction

variable C may have any reasonable probability distribution.
In addition, the systematic laboratory effects model allows for
the possibility that not all pairs of the variables X1, . . . , Xn

may have independent state-of-knowledge distributions.

4.3. Standardized degrees of equivalence

Generally, the submitted uncertainties u(x1), . . . , u(xn)

are unequal; therefore, the uncertainties u(d1), . . . , u(dn)

are different. When the uncertainties u(d1), . . . , u(dn) are
different, one may compare the dimensionless ratios
d1/u(d1), . . . , dn/u(dn). The dimensionless ratio for a

19 The corresponding UCR, xUCR, is the arithmetic mean, xA, and the
probability distribution for the correction variable C is the discrete equal-
probability distribution.
20 Therefore, the uncertainty, u(xR), determined from the systematic
laboratory effects model is less than the uncertainty, u(xR), determined from
the mixture distribution.

laboratory that submits a too small uncertainty would be
inflated, and a laboratory that submits a too large uncertainty
would be deflated. Therefore, we suggest that the degrees of
equivalence, d1, . . . , dn, be divided by a common uncertainty.
In particular, we suggest that the degrees of equivalence,
d1, . . . , dn, be divided by the uncertainty, u(xR). Therefore, we
propose the dimensionless expression Ei = (xi − xR)/u(xR)

as the standardized degree of equivalence of the result xi

for i = 1, 2, . . . , n. The corresponding expression for the
standardized degree of equivalence of xi and xj is Ei − Ej =
[(xi − xR)/u(xR) − (xj − xR)/u(xR)] for i, j = 1, 2, . . . , n

and i �= j [10].

5. Statistical analysis based on the systematic
laboratory effects model

We assume that the submitted results x1, . . . , xn are
mutually comparable and appropriate for determining the key
comparison reference value, and the submitted uncertainties
u(x1), . . . , u(xn) are sufficiently reliable. It is useful to
classify CIPM key comparisons according to the type of results,
x1, . . . , xn, that are compared. Comparison of the first kind:
the laboratory results, x1, . . . , xn, are direct measurements
of a common measurand of a stable value, Y , during the
comparison. Comparison of the second kind: the laboratory
results, x1, . . . , xn, are not direct measurements of a stable
measurand. Many CIPM key comparisons are of the second
kind because it is often difficult or impossible to realize exactly
the same measurand for all participants.

5.1. Statistical analysis for a comparison of the first kind

The key comparison reference value, xR, and uncertainty,
u(xR), are identified with the CCR, y, and uncertainty,
u(y), respectively. The following three steps are required
to determine y and u(y) from the data x1, . . . , xn and
u(x1), . . . , u(xn) through the systematic laboratory effects
model. First, determine a UCR, xUCR , and its associated
standard uncertainty, u(xUCR). Second, determine the
correction c and uncertainty u(c) to counter possible bias
(XUCR − Y ) in xUCR. Third, determine the CCR, y, and its
associated combined standard uncertainty, u(y).

Note 1. When a number of travelling standards are circulated,
the value Y may be defined as the average value of the
travelling standards. In that case, the results, uncertainties, and
correlation coefficients are determined from the measurements
for all travelling standards.

Note 2. In some CIPM key comparisons the values of the
travelling standards may drift in a recognized time dependent
manner. Such data may be analysed as a CIPM key comparison
of the first kind. The pilot laboratory periodically measures
the travelling standards during the entire duration of the
comparison to quantify their drift. The participants measure
the travelling standards at different time periods. The measured
results are adjusted for the drift using the measurements made
by the pilot laboratory to determine the laboratory results
x1, . . . , xn [14]. The uncertainties u(x1), . . . , u(xn) must
include the components of uncertainty associated with the
adjustments. The uncertainty, u(xUCR), associated with the
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Table 1. Relative differences, xi , between individual laboratory and BIPM measurements and standard uncertainties, u(xi), for short (S),
medium (M), and long (L) wavelengths.

Wavelength S Wavelength M Wavelength LLaboratory
indices and
names xi × 104 u(xi) × 104 xi × 104 u(xi) × 104 xi × 104 u(xi) × 104

1. ptb.t −0.80 1.3 −0.2 1.3 0.0 1.3
2. bnm.inm 1.80 2.0 1.1 1.7 0.6 1.4
3. csiro 1.50 1.4 2.0 1.4 1.35 1.4
4. dfm −0.45 2.5 −0.3 2.5 −0.5 2.5
5. etl 15.10 4.9 13.1 4.9 17.15 4.9
6. hut 2.30 2.7 1.7 2.7 −0.4 2.7
7. ien −17.60 6.8 −11.0 6.8 0.7 6.8
8. ifa 3.30 2.2 0.0 2.2 −1.3 2.2
9. msl 0.40 1.2 0.3 1.3 0.6 1.4

10. kriss −1.25 2.4 −5.1 2.4 −0.65 2.4
11. nist 7.30 4.5 5.9 3.2 2.9 4.2
12. nmi.vsl −1.45 2.6 −1.1 2.6 −0.55 2.6
13. npl −0.30 1.1 1.3 1.1 1.4 1.2
14. nrc 3.00 3.4 5.3 3.4 4.6 3.4
15. ptb.r 3.20 2.1 2.9 2.9 2.5 1.4
16. sp −1.10 5.1 −1.0 5.1 −1.3 5.1

UCR, xUCR, must include the correlation coefficients r(xi , xj ),
for i, j = 1, . . . , n and i �= j .

Note 3. When the measurements are made at various settings of
a parameter such as wavelength or frequency, the calculations
are repeated for each wavelength or frequency.

5.2. Statistical analysis for a comparison of the second kind

The results x1, . . . , xn are not direct measurements of a stable
measurand of value Y . We will define the value Y for a CIPM
key comparison of the second kind and then interpret xR and
u(xR) in terms of that value. The subject experts judiciously
design a CIPM key comparison such that the results x1, . . . , xn

are mutually comparable. Therefore, we may define the value
Y for a CIPM key comparison of the second kind as a statistical
prediction similar to the results x1, . . . , xn that might be
realized by a competent laboratory similar to the laboratories
that participated in the comparison. With this interpretation
of the value Y , the measurement equation Y = XUCR + C may
be used for a CIPM key comparison of the second kind. Thus
the CCR, y, for the prediction Y and uncertainty u(y) may be
determined from the systematic laboratory effects model. The
key comparison reference value, xR, and uncertainty, u(xR),
are identified with y and u(y), respectively, and interpreted
as the expected value and standard deviation of a state-of-
knowledge distribution for the values that could reasonably be
attributed to the prediction Y . In particular, the key comparison
reference value, xR, is a value that could reasonably be
attributed to the prediction Y of the result that might be realized
by a competent laboratory. In section 7, we illustrate the
statistical analysis for a comparison of the second kind.

6. A useful method for identifying discrepant results
and uncertainties

According to the Statistical Guidelines paper, the data
published in the official Draft A of the CIPM key comparison
should be used to determine the key comparison reference
value, xR, and uncertainty, u(xR). However, some CCs

Table 2. The k-statistic and the h-statistic for the data shown in
table 1.

Wavelength S Wavelength M Wavelength LLaboratory
indices and
names k h k h k h

1. ptb.t 0.395 −0.269 0.403 −0.222 0.402 −0.383
2. bnm.inm 0.607 0.134 0.526 0.033 0.433 −0.247
3. csiro 0.425 0.088 0.434 0.210 0.433 −0.078
4. dfm 0.759 −0.215 0.774 −0.242 0.773 −0.496
5. etl 1.487 2.196 1.518 2.392 1.515 3.494
6. hut 0.819 0.212 0.836 0.151 0.835 −0.473
7. ien 2.064 −2.874 2.106 −2.345 2.103 −0.225
8. ifa 0.668 0.367 0.681 −0.183 0.680 −0.677
9. msl 0.364 −0.083 0.403 −0.124 0.433 −0.247

10. kriss 0.728 −0.339 0.743 −1.185 0.742 −0.530
11. nist 1.366 0.987 0.991 0.977 1.299 0.273
12. nmi.vsl 0.789 −0.370 0.805 −0.399 0.804 −0.507
13. npl 0.334 −0.191 0.341 0.072 0.371 −0.066
14. nrc 1.032 0.320 1.053 0.859 1.051 0.657
15. ptb.r 0.637 0.351 0.898 0.387 0.433 0.182
16. sp 1.548 −0.315 1.579 −0.380 1.577 −0.677

may choose to screen and possibly adjust the data published
in the Draft A before using them to determine xR and
u(xR). Even though the participants of a CIPM key
comparison are competent laboratories, the uncertainties
stated by some may be unreasonably small in view of the
experts. A practical remedy concerning unreasonably small
uncertainties is to replace them with a more reasonable
‘cut-off’ value determined by the experts. Also, one or more of
the results may seem erroneous in view of the previous or other
measurements. A decision concerning seemingly erroneous
results is a matter of expert judgment and is subject to the
protocol and the limitations of time and resources available for
investigation.

A useful statistical method for flagging discrepant results
x1, . . . , xn and uncertainties u(x1), . . . , u(xn) is the ASTM
documentary standard E691-199921 [15] or its equivalent.

21 Author names are not associated with the ASTM standards. However, the
original issue of the ASTM standard E691, dated 1979, was drafted by Dr John
Mandel and Dr Robert Paule based on their experience with interlaboratory
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Figure 1. Chart of the k-statistic for the data shown in table 1.

The ASTM standard E691 requires that all n laboratories
make measurements on m different materials. The ASTM
standard E691 refers to the set of measurements from a
particular laboratory and for a particular material as a cell.
There are n × m cells. A k-statistic and an h-statistic
are calculated for each cell. The k-statistic is defined as√

[u2(xi)/(
∑

i u
2(xi)/n)]; i.e. the k-statistic is the normalized

cell uncertainty. It is used to compare the uncertainties
u(x1), . . . , u(xn). The h-statistic is defined as (xi − xA)/s,
where s = √

[
∑

i (xi − xA)2/(n − 1)]; i.e. the h-statistic is
the standardized cell arithmetic mean. It is used to compare
the results x1, . . . , xn. Charts of the k-statistic and the
h-statistic display the data x1, . . . , xn and u(x1), . . . , u(xn) in
ways that make it easy to check for discrepant uncertainties
and discrepant results. The ASTM standard E691 describes
statistical tests of discrepancy for measurements that have
approximately normal sampling distributions.

6.1. An example illustrating the use of the ASTM standard
E691

For illustration, we have used the data from the supplementary
comparison of cryogenic radiometers CCPR S3 [16] that we
had previously used in [10]. We may think of the wavelengths
as different materials. Since not all laboratories used all six
wavelengths, the ASTM standard E691 cannot directly be used
for the CCPR S3 data. So we have slightly modified the data
as discussed below. The modified data are displayed in table 1
for n = 16 laboratories and m = 3 wavelengths. The results
x1, . . . , x16 for the first 16 laboratories in [16] are the relative
differences from the BIPM measurement and the last result,
x17, from the BIPM is identically equal to zero. So the
two subsets {x1, . . . , x16} and {x17} of the results x1, . . . , x17

represent different quantities. We have excluded the BIPM
result, x17, reducing the number, n, of laboratories to 16. Each
laboratory used one or both of the wavelengths 476 nm and

evaluations at the predecessor organizations of the Chemical Science and
Technology Laboratory (CSTL) of the National Institute of Standards and
Technology (NIST), US Department of Commerce. The original objectives
of the ASTM standard E691 are assessment of a test method and quantification
of its repeatability and reproducibility standard deviations. We suggest its use
for flagging discrepant results and uncertainties.

488 nm. Each laboratory used the wavelength 514 nm. Each
laboratory used one or both of the wavelengths 633 nm and
647 nm. The modified data are for three wavelengths, S (short),
M (medium), and L (long). The data for the short wavelength,
S, are merged results for the wavelengths 476 nm and 488 nm.
For those laboratories that used both wavelengths, the data are
the average of the two results; for those laboratories that used
only one of the two wavelengths, the data are results for the
wavelength that was used. The data for the long wavelength,
L, are similarly merged results for the wavelengths 633 nm
and 647 nm. The data for the medium wavelength, M , are
the results for the wavelength 514 nm, which was used by all
laboratories. The data for the wavelength 568 nm are not used.
The uncertainties given in table 1 are reproduced from table 65
of [16].

For the data in table 1, the computed values of the
k-statistic and the h-statistic are given in table 2. The charts of
the k-statistic and the h-statistic are shown in figures 1 and 2,
respectively. From figure 1, we note that the uncertainties from
laboratories 5, 7, and 16 are much larger and the uncertainties
from laboratories 11 and 14 are somewhat larger than the rest.
From figure 2, we note that the results for laboratories 5 and 7
seem to be different from the rest. The laboratories 5 and 7 are
implicated in both figures 1 and 2.

The data for the wavelength 514 nm for 14 laboratories,
excluding laboratories 5 and 7, are reproduced in table 3. These
are original data from [16]. In [10], we had used the entire data
for all 17 laboratories. Now we are using a subset of the data.

7. Statistical analysis of the data from the
supplementary comparison CCPR S3

We have used the data from table 3 to calculate the UCR, xUCR,
correction, c, CCR, y, and their associated uncertainties using
the triangular and the discrete equal-probability distributions
for the correction variable C. We have chosen the arithmetic
mean, xA, as the UCR, xUCR. Another choice is the weighted
mean, xW. In CCPR S3, the result xi is the average relative
difference in the responsivity for a set of transfer standard
detectors calibrated at the laboratory labelled i and the same
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Figure 2. Chart of the h-statistic for the data shown in table 1.

Table 3. Relative differences, xi , between individual laboratory and
BIPM measurements and standard uncertainties, u(xi), for the
wavelength 514 nm excluding the laboratories labelled 5 and 7.

Wavelength 514 nmLaboratory
indices and
names xi × 104 u(xi) × 104

1. ptb.t −0.2 1.3
2. bnm.inm 1.1 1.7
3. csiro 2.0 1.4
4. dfm −0.3 2.5
6. hut 1.7 2.7
8. ifa 0.0 2.2
9. msl 0.3 1.3

10. kriss −5.1 2.4
11. nist 5.9 3.2
12. nmi.vsl −1.1 2.6
13. npl 1.3 1.1
14. nrc 5.3 3.4
15. ptb.r 2.9 2.9
16. sp −1.0 5.1

detectors calibrated at the BIPM, for i = 1, 2, . . . , n. Thus
CCPR S3 is a comparison of the second kind. The value Y

corresponding to the results x1, . . . , xn may be defined as a
statistical prediction similar to the results x1, . . . , xn that might
be realized by a competent laboratory similar to the laboratories
that participated in the supplementary comparison CCPR S3.
With this interpretation of the value Y corresponding to the
results x1, . . . , xn, the systematic laboratory effects model may
be applied to the data shown in table 3. Thus the result, y,
and uncertainty, u(y), may be determined from the systematic
laboratory effects model. Table 4 shows xA, u(xA), c, u(c),
y, and u(y) determined from the triangular distribution with
default limits (x(1)−xA) and (x(n)−xA) and the peak at zero, and
the discrete equal-probability distribution for the correction
variable C.

Figures 3, 4, and 5 display the 14 results, x1, . . . , xn,
from table 3 and their two-standard uncertainty intervals
[xi ± 2u(xi)] for i = 1, 2, . . . , n. Figure 3 plots
the uncertainty interval [xA ± 2u(xA)], where u(xA) is the

Table 4. The arithmetic mean, xA, and uncertainty, u(xA), the
correction, c, and uncertainty, u(c), and the CCR, y, and
uncertainty, u(y), determined from triangular and discrete
equal-probability distributions for the data shown in table 3.

Component Result Standard uncertainty

Uncorrected xA × 104 = 0.91 u(xA) × 104 = 0.70
combined result

Correction based c × 104 = −0.34 u(c) × 104 = 2.25
on triangular
distribution

Corrected combined y × 104 = 0.57 u(y) × 104 = 2.36
result from triangular
distribution

Correction based c × 104 = 0.00 u(c) × 104 = 2.64
on discrete
equal-probability
distribution

Corrected combined y × 104 = 0.91 u(y) × 104 = 2.74
result from discrete
equal-probability
distribution

uncertainty associated with the UCR, xA. Figure 4 plots the
uncertainty interval [y±2u(y)] determined from the triangular
distribution. Figure 5 plots the uncertainty interval [y±2u(y)]
determined from the discrete equal-probability distribution.
Figures 4 and 5 are similar but different from figure 3. The
intervals [y ± 2u(y)] shown in figures 4 and 5 represent
the CCPR S3 reference value and its associated uncertainty
determined from the systematic laboratory effects model. The
statistical interpretation of these intervals is consistent with the
ISO Guide.

8. Summary

An international advisory group commissioned by the
director of the BIPM has published guidelines for the
statistical analysis of a simple CIPM key comparison where a
travelling standard of a stable value during the comparison
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Figure 3. Results from table 3 with their arithmetic mean as UCR shown on the right.
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Figure 4. Results from table 3 with CCR, determined using the triangular distribution with limits (x(1) – xA) and (x(n) – xA), shown on the
right.

is independently measured by the participants. There are a
number of concerns regarding these guidelines. Also, many
CIPM key comparisons are not simple. So the guidelines do
not apply to many comparisons. This paper has introduced a
systematic laboratory effects model for the statistical analysis
of CIPM key comparisons. This model applies to all those
comparisons where the data are appropriate for determining
the key comparison reference value.

The data submitted by the participating laboratories
consist of the paired results and standard uncertainties
[x1, u(x1)], . . . , [xn, u(xn)]. The value Y is either the value
of a stable measurand or a statistical prediction similar to
the results, x1, . . . , xn, that might be realized by a competent
laboratory similar to the laboratories that participated in the
comparison. The ISO Guide’s eight steps ([4], section 8)
for determining xR, u(xR), and an uncertainty interval

[xR ± ku(xR)] for Y based on the systematic laboratory effects
model are as follows.

Step 1. The measurement equation for Y corresponding to an
additive bias is Y = XUCR + C, where XUCR = ∑

i aiXi , ai �
0,

∑
i ai = 1, X1, . . . , Xn are the laboratory expected values,

and C is a correction for possible bias in the UCR xUCR =∑
i aixi . Here, X1, . . . , Xn, XUCR, C, and Y are variables

with state-of-knowledge distributions. The alternatives for
xUCR include the weighted mean, xW, and the arithmetic mean,
xA, of the results x1, . . . , xn. A distribution for C is defined
independent of the distributions for X1, . . . , Xn.

Step 2. The results, x1, . . . , xn, are regarded as the expected
values of the state-of-knowledge distributions for X1, . . . , Xn,
respectively. Specify a reasonable distribution for C based
on scientific judgment. The alternatives for the distribution
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Figure 5. Results from table 3 with CCR, determined using the discrete equal-probability distribution, shown on the right.

of C include a rectangular distribution on some interval [4],
asymmetric triangular distribution [10], and discrete equal-
probability distribution [5]. The expected value, E(C), of the
distribution for C is denoted by c.

Step 3. The uncertainties, u(x1), . . . , u(xn), are regarded as the
standard deviations of the state-of-knowledge distributions for
X1, . . . , Xn, respectively. The standard deviation, S(C), of the
distribution for C is denoted by u(c).

Step 4. Quantify the correlation coefficients, r(xi, xj ), for the
pairs Xi and Xj that might be correlated, where i, j = 1, . . . , n

and i �= j .

Step 5. The CCR for Y is y = xUCR + c. The result, y,
is identified with the key comparison reference value, xR.

Step 6. The standard uncertainty associated with y is u(y) =√
[u2(xUCR) + u2(c)], where u(xUCR) = √

[
∑

i a
2
i u

2(xi) +
2

∑
(i<j) aiaju(xi)u(xj )r(xi, xj )]. The uncertainty, u(y), is

identified with the standard uncertainty, u(xR).

Step 7. If it is necessary to express the uncertainty as an interval,
multiply the combined standard uncertainty u(y) ≡ u(xR) by
a coverage factor, k, to obtain the interval [y ± ku(y)] ≡
[xR ± ku(xR)]. The conventional value of k is two.

Step 8. Report the key comparison reference value, xR,
the standard uncertainty, u(xR), and the uncertainty interval
[xR ± ku(xR)].

The key comparison reference value, xR, and its associated
standard uncertainty, u(xR), are interpreted as the expected
value and standard deviation of a state-of-knowledge
distribution for the values that could reasonably be attributed
to Y based on the data [x1, u(x1)], . . . , [xn, u(xn)]. The degree
of equivalence di = xi −xR = xi −y is the expected value of a
state-of-knowledge distribution for the laboratory effect (bias)
Xi − Y , and the uncertainty, u(di), is the standard deviation
of Xi − Y , for i = 1, 2, . . . , n. The degree of equivalence
di,j = xi − xj is the expected value of a state-of-knowledge
distribution for Xi −Xj , the difference between the laboratory

expected values, Xi and Xj , and the uncertainty u(di,j ) is the
standard deviation of Xi−Xj , for i, j = 1, 2, . . . , n and i �= j .

Acknowledgments

The views expressed in this paper are of the authors and
not necessarily the consensus of the institute they represent.
The following provided helpful comments on earlier drafts of
this paper: Ted Vorburger, Ron Boisvert, Eric Shirley, Tony
Kearsley, Jim Gardener, Nell Sedransk, and Al Jones.

References

[1] Mutual Recognition of National Measurement Standards and
of Calibration and Measurement Certificates Issued by
National Metrology Institutes 1999 International Committee
of Weights and Measures (CIPM)
http://www1.bipm.org/utils/en/pdf/mra 2003.pdf

[2] Cox M G 2002 The evaluation of key comparison data
Metrologia 39 589–95

[3] Guidelines for CIPM Key Comparisons 1999 International
Committee of Weights and Measures (CIPM)
http://www1.bipm.org/utils/en/pdf/guidelines.pdf

[4] Guide to the Expression of Uncertainty in Measurement 1995
2nd edn (Geneva: International Organization for
Standardization) ISBN 92-67-10188-9

[5] Kacker R N, Datla R U and Parr A C 2003 Statistical
interpretation of key comparison reference value and
degrees of equivalence J. Res. Natl Inst. Stand. Technol. 108
439–46

[6] Kackar R N and Harville D A 1984 Approximations for
standard errors of estimators of fixed and random effects in
mixed linear models J. Am. Stat. Assoc. 79 853–62

[7] Searle S R, Casella G and McCulloch C E 1992 Variance
Components (New York: Wiley)

[8] Kacker R N and Jones A T 2003 On use of Bayesian statistics
to make the guide to the expression of uncertainty in
measurement consistent Metrologia 40 235–48

[9] BIPM key comparison data base http://kcdb.bipm.org
[10] Kacker R N, Datla R U and Parr A C 2002 Combined

result and associated uncertainty from interlaboratory
evaluations based on the ISO Guide Metrologia 39 279–93

Metrologia, 41 (2004) 340–352 351



R N Kacker et al

[11] Levenson M S, Banks D L, Eberhardt K R, Gill L M,
Guthrie W F, Liu H K, Vangel M G, Yen J H and Zhang N F
2000 An approach to combining results from multiple
methods motivated by the ISO GUM J. Res. Natl Inst.
Stand. Technol. 105 571–9

[12] Toman B 2004 A Bayesian approach to assessing uncertainty
and calculating a reference value in key comparison
experiments, submitted, http://www.itl.nist.gov/div898/
bios/toman.html

[13] Stuart A and Ord J K 1987 Kendall’s Advanced Theory of
Statistics: Distribution Theory 5th edn (New York: Oxford
University Press)

[14] Jeffery A M 2002 Final report on key comparison CCEM-K4
of 10 pF capacitance standards Metrologia 39 (Tech. Suppl.)
01003 http://www.bipm.org/utils/common/pdf/
final reports/EM/K4/CCEM-K4.pdf

[15] Standard Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method 1999 ASTM
standard E691 http://www.astm.org

[16] Goebel R, Stock M and Köhler R 2000 Report on the
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