# shop on Fire Growth Spread on Objects

March 4-6, 2002

V

434 1997



## **SOME U.S. STATISTICS**

#### 2000 (NFPA J.):

1,708,000 fires (-6.3 %) 505,500 in structures with 75% in residences

4045 fire deaths (+18 %) (3445 residential, 90 non-residential)

22,350 fire injuries (+2.2 %) (17,400 in residences (+5.9 %))

\$10.2 billion in property losses (+1.8 %)
(\$8.5 B in structures, \$5.7 B in residences)



| SOME MORE U.S. STATISTICS<br><u>1997 (NFPA FPH)</u> |                                                                       |                                                                                                                                     |                                                                                                                                                                                           |
|-----------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fires                                               | Deaths                                                                | Injuries                                                                                                                            | Property<br>Damage                                                                                                                                                                        |
| 71 %                                                | 21 %                                                                  | 58 %                                                                                                                                | 19 %                                                                                                                                                                                      |
| 5 %                                                 | 12 %                                                                  | 11 %                                                                                                                                | 9 %                                                                                                                                                                                       |
| 24 %                                                | 67 %                                                                  | 31 %                                                                                                                                | 72 %                                                                                                                                                                                      |
|                                                     | <b>RE U.</b><br><u>997 (NI</u><br><i>Fires</i><br>71 %<br>5 %<br>24 % | RE U.S. STA         997 (NFPA FPH         Fires       Deaths         71 %       21 %         5 %       12 %         24 %       67 % | RE U.S. STATISTI         997 (NFPA FPH)         Fires       Deaths       Injuries         71 %       21 %       58 %         5 %       12 %       11 %         24 %       67 %       31 % |



#### **FLASHOVER IMPLICATIONS**

- Eliminating flashover could reduce U.S. fire deaths by 80 % and injuries by 50 %.
- Eliminating flashover could reduce direct U.S. fire property losses by 80 %.
- Improved understanding of flashover would allow more effective testing and cut time-to-market for new products.
- Trade implications. Examples are ISO 9705 and European Single Burning Item (SBI) test.





## PRINCIPAL MEANS FOR LIMITING THE RATE OF HEAT RELEASE

*Reducing the fire spread and growth rates is crucial* 

Passive

• Control fuels (e.g., wall linings and contents) and/or ventilation.

Active

- Early detection followed by manual intervention.
- Early detection followed by automatic suppression.





### **OBJECTIVE**

To reduce flashover risk cost-effectively by adapting measurement and predictive methods to better understand conditions leading to flashover; to enable early and certain fire and environment sensing; to advance fire suppression technologies; and to enable new/improved materials whose fire resistance does not negatively impact performance, cost, or the environment.



#### **Reduced Risk of Flashover Program: 2002 STRS Projects**

Materials:

- 1. Micro-scale High Throughput Optimization of Flame Retarded Polymers (Nyden)
- 2. Bench-scale High Throughput Flame Retardancy Measures (Gilman)

Detection:

1. Early, Fault-Free Detection (Cleary)

Fire Growth and Spread:

- 1. Flame Radiation (Pitts)
- 2. Fuel Generation Rates for Solid Fuels Under Fire Conditions (Baum and Linteris)
- 3. Real-Scale Specification and Testing (Notarianni, Peacock, and Johnsson)





#### **<u>NEW DIRECTION:</u>** DEVELOP MODEL FOR FIRE GROWTH ON ROOM CONTENTS

- Most models for fire growth and spread have been developed for wall linings
- Models for fire spread and growth on room contents are very limited
- Statistics indicate that most enclosure fires develop on room contents
- Models are required to characterize effectiveness of various approaches for limiting heat release rate





## **REALISTIC FIRE GROWTH MODEL**

- Coordinate experimental and modeling investigations
- Limit fuels and configurations (realistic and challenging)
- Use ISO 9705 as basis for enclosure
- Characterize uncertainties in experiments and models
- Emphasize first and second burning item





## **WORKSHOP PURPOSES**

- Review current understanding of fire growth and spread on objects.
- Review current status of models for fire spread and growth on objects.
- Provide a forum for active discussion of topic.
- Provide a common thorough review of field for BFRL staff members.
- Identify primary obstacles and opportunities for characterizing and modeling fire spread and growth on objects.





#### **WORKSHOP ORGANIZATION**

- Five Sessions:
  - 1. Ignition and Flammability: Tom Ohlemiller
  - 2. Materials and Response: Greg Linteris
  - 3. Fundamental Flame Spread and Flame Spread on Surfaces: Kathy Notarianni
  - 4. Flame Spread on Objects: Rick Peacock
  - 5. Field Models: Howard Baum
- Talks are 45 minutes long. Each session is followed by half hour discussion period designed to generate one or two themes, conclusion, or issues.
- During last hour of workshop on Wednesday will return to these topics to form basis for workshop conclusions.





#### **SOME PRACTICAL DETAILS**

- Rest Rooms
- Coffee, tea, and hot chocolate in rear, soda machine at end of hall
- Lunch in NIST cafeteria
- Banquet tonight (Maggiano's Little Italy, get directions)
- Visitors on travel orders please see Paula to sign vouchers.
- Proceedings released as NIST Internal Report (Abstracts, Presentations, and Conclusions)
- Program in Abstract Book (Matti Kokkala, Peter Van Hees)

