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Ab initio calculation of €,(w) including the electron-hole interaction:
Application to GaN and CaF,
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We present a computationally efficient first-principles scheme to calcejéte) for crystalline insulators,
including the electron-hole interaction. The effective Hamiltonian for electron-hole pairs contains both the
exchange and direct parts of this interaction. An iterative scheme is used in whiehmtleenents ofe,(w) are
computed by repeated action of the Hamiltonian on electron-hole pair states. The scheme is applied to two
insulators where there are significant experimental uncertainties in their ultraviolet optical properties: GaN and
CaF,. [S0163-18209)08507-0

I. INTRODUCTION agree extremely well with reflectivity and ellipsometry data
for these material&:®

It is a goal of present day materials theory to relate ma- Not surprisingly, the computations are quite demanding.
terials properties to microscopic or atomistic descriptions offhis is because each pair state wave function depends upon
matter. First-principlegor “ab initio” ) theories, in which two variablesy, andry,, so the resulting eigenproblem has a
the only input is the identity of the atomic constituents anddimension<N?, whereN is the number of atoms. In a stan-
fundamental constants, have succeeded in predicting struéard approacf’ the Bethe-Salpeter equation is solved for
tural and vibrational properties, as well as ground-state eledhe electron-hole pair state wave functions and energies,
tronic propertiegsuch as the electron densityfThese prop- Which are then used in a sum-over-statezs Sxpression to de-
erties are determined quite accurately in effective onel€Min€e;(w). Such a method requires(N“)°=N> opera-
electron mean-field theories, like the Iocal-densityt'ons' . :
approximation(LDA).! In these theories, each electron feels In this work, we Pres’?”t the detalls of our schem_e to
an orbital-independent potential and is represented by a on omputee,(w) for crystalllne materlals._lnstead of so_lvmg.

. . L . e Bethe-Salpeter eigenproblem, we directly determine dif-
particle wave functiony(r). For properties involving elec-

troni itai h field d inti f .ferent w-moments ofe,(w) by repeatedly acting with the
ronic exciiations, however, mean-ieid descriplions can fali.ge tive Hamiltonian extracted from the Bethe-Salpeter

) o . tequatior15. Individual actions of the Hamiltonian are simpli-
and inverse photoemission, where single electrons or holeg, 4 by using two different bases in which to represent

are added to the system. _Here, it is necessary to dress th&ctron-hole pair states: thieal-space basisand theone-
added electron or hole with the polarization cloud of thepariicle eigenstate basidhis results in a method that scales
surrounding “unexcited” electrons, as in a quasiparticleag N4, We apply this method to the crystalline insulators
calculation? In quasiparticle theories, electrons feel anGaN (wurtzite and zinc blende and Cak. Both materials
orbital-dependent potential, but each is still described by are used in optical technologyzaN for blue/UV optoelec-
one-particle wave function. tronic devices, and CaFor UV optics), yet neither is fully
For the case of optical properties, the situation is more nderstood experimentally. We endeavor to resolve some of
extreme. Here, a photon interacts with the system to producgese difficulties by comparing our results to the available
an electron-hole pair. In addition to interacting with their experiments.
respective polarization clouds, the excited electron and hole The remainder of the paper is organized as follows: Sec-
interact strongly with each other to produce bound stategon I contains the basic theory and the details of the com-
(excitong and above-threshold resonances. These effectgytational method. Section I1l contains the results for wurtz-
cannot be modeled in an effective one-particle picture. Injte and zinc blende GaN, and CaFtogether with a
stead it is necessary to deal with two-particle statesgiscussion of their application to the interpretation of experi-

#(re,rn), Wherere andry, are the positions of the excited mental data. We conclude in Sec. IV.
electron and hole. Although the importance of the electron-

hole interaction in optical absorption has been understood for
decades first-principles calculations of optical properties in-
cluding the electron-hole interaction have only recently be- In this section, we discuss the theory and computational
gun to appeat:® In these theories, individual quasielectron method used to calculate;(w) including the electron-hole

and quasihole states are determined in an LDA/quasiparticlmteraction. The discussion is divided into five subsections.
approach, and then quasielectron-quasihole pair states are déxe first describes the space of singly excited electron-hole
termined by solving the Bethe-Salpeter equation with an appair states, together with the bases we use to represent them.
propriately screened Coulomb interaction. These electronfhe second contains the equation of motion for the electron-
hole pair states are then used to construct the frequencyrole pairs. The third presents a detailed treatment of the ef-
dependent imaginary part of the dielectric functien(w). fective Hamiltonian that is extracted from the equation of
Results obtained so far for semiconductors and insulatormotion, and a description of the individual terms. The fourth
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presents the iterative scheme to calculajéw) by acting (i,j;k) (x,y;R)
with the effective Hamiltonian. The final subsection de- N

scribes a computationally efficient way of decomposing Elk)

€,(w) into contributions arising from individual interband \‘i’\ i

transitions.

A. Excited electronic states \

Our treatment of optical absorptigwhich follows that of
Ref. 3 is based on the following simple picture: Before a
photon is absorbed, the solid is in its ground state. We ne-
glect phonons in this work, so the ions are taken to be fixed

in their equilibrium lattice positions. Thus, we are unable to /O/\
h+

treat the decay of excited electron-hole pairs due to electron-

phonon scattering, and our calculations are restricted to zero

temperature. The solid’s ground staf@), is then the elec- /
tronic ground state, which we assume to be a spin singlet,

and represented by a single Slater determinant of occupied

valence orbitals:

FIG. 1. Pictorial representations off,{;k) and ,y;R) bases.
|vacuun‘). (1) The curves on the left-hand side represent one-electron bands, and

0)=
| ) the dashed boxes on the right-hand side represent unit cells.

T 4T
H avTavl
v

When a photon is absorbed, an electron is promoted from the . .
valence band to the conduction band, leaving a hole behindVherex andy are the positions of the electron and hole in
An excited state, denoted B, is singly excitecand there- their respective unit cells, anR is the lattice translation
fore contains one electron-hole pairal(awallavl)lw vector separating the cells. In E(p), the indicated Bloch
=|c,v). Henceforth, we suppress spin indices, and considet M _overR’ insures that the total crystal morr_lentum Qf the
only spin singlets; any product of the foraia is taken to pair is always#qg. Note that the arguments in the triples

+ S . . (i,j;k) and ,y;R) are closely related to each other. In par-
meana;a;+a a, . Because of the electron-hole interaction,

. y . . ticular, R is the Fourier transform conjugate kf Figure 1
agiven @:,v.).palr Is not an energy e|genstate. Insteiddlis shows a pictorial representation of the two bases.
a superposition of all possible v) pairs:

It is often necessary to transform from thigj(k) basis to
the (x,y;R) basis and vice versa. This is accomplished with
1f)=", y(c,v)ala,|0)=> ¥(c,v)|cw). (20  the transformation law,

c,v c,v

The expansion coefficienty(c,v), can be viewed as the Y(X,Y:R)

electron-hole pair wave function in thene-particle eigen-

state basis. Another basis which is of use is treal-space _ d’k K- (x—y+R) * ik
basis in which the electron and hole are each located at “ f(ZT)?’e Ui je+-g()UT (V) (1 13K),

positions in the solid:

(6)

- t -
|f>_r§;h w(re’rh)afeafh|o>_r§h glre.rlrern). (3 whereu; ., 4(X) andu?,(y) are the periodic parts of Bloch
o ) ] ) ) functions for the electron and hole. The inverse transforma-
Restricting the disscussion to crystalline solids, EJ.can  tjon is also easily written down.
be rewritten as

H=S wiikoal S il B. Bethe-Salpeter equation
| >_i,j,k 40k )ai'k+qaj'k|0>_i,j,k AR The equation that the electron-hole pair wave function
(4) satisfies can be derived from the equation of motion for the

. . - . electron-hole pair creation operator:
wherei andj are electron and hole band indices, &id the P P

wave vector of the holé¢the wave vector of the electron is
k+q, whereiq is the miniscule photon momentiniike- (¥|[H,ala,]|¥o)=E(¥|ala,[¥o). ()
wise, Eq.(3) can be rewritten as
Here,| V) is an exact excited state of energy |V ) is the
_ ) o pnyat exact ground state with energy set to zero, Hnd the exact
If) x%R z,b(x,y,R)% eXHia Ry p e rrdyrl0) many-body Hamiltonian. If we replade?) by |0) of Eq.
(1), and|¥) by the|f) of Eqg. (4), we obtain the approximate
= wxy;R)IxY; R), (5) equation of motion for the electron-hole pair in thgj(k)
xy,R basis:
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[Ei(k+0a)—E;(K)—E]y(i,j;:k) valence state charactére., a system with a gapthe net
electron-hole interaction is attractive and favors excitonic
a3k’ L binding.
=—2 02005k Vedi”,j75k")
irjJ (2m) . .
C. Effective Hamiltonian
~(LIkIVali” 37K TGC 7K. ®) Because the Bethe-Salpeter equation is a secular equation,
E. andE; are one-electron band energies. The direct matri one can extract an effective Hamiltonian from it so that Eq.
i ] ) . _ L
elementi,j:k|Vgli’,':k'), is given by X(8) is of the formHggy=E. It is important to understand

thatH . is different from the exact many-body Hamiltonian,
H, which appears in E(7). In particular,H g acts only on

a3 fds o1 (k=K)-(x=y+R) * ‘ the space ofsingly e?<C|ted statesFrom the form of the
; f X 4 Uker 20U k(Y) Bethe-Salpeter equatiohl; has three terms:

XV,Y; R o q(X)US 0 (Y), Her=Hiet Hairt Hex- ©)

: : . o, . We now di h term in the order of its importan
while the exchange matrix element, j;k|Veli’,j’;k"), is e now discuss each te e order of its importance

given by (magnitude.
1. One-electron term H,
E f d3xf d3ye—iq-(x—y+R)ui*k+ (X)U; (X) H,c is most easily defined by the way it acts on a basis
R e ' vector in the one-particle eigenstate basis:
XVOGYRUi (YU o (). HidiLjik)=[Ei(k+q)—Ej(K)1li.j:k). (10

This difference of one-electron band energies is just the ex-

tween the electron at+R and the hole ay. Both terms citation energy in the absence of the electron-hole interac-
describe the scattering of pair, {:k) into pair (i'j’;k’). tion. Because _th_e pho_ton wave vectpis small compared to
Note that the interactiol’ that appears in the matrix ele- the_characteristic Brillouin-zone length, we replaég(k
ments is unscreened. This is somewhat unphysical. The ext @) by Ei(k) in practice. As stated in the Introduction, the
cited electron and hole move within a sea of all the othe€léctrons and holes are reatjyasielectronsindquasiholes
electrons in the system. These other electrons form a polafiréady renormalized by the presence of their surrounding
izable medium that should screen the Coulomb interactiofpolarization clouds. Thus, we use accurate quasiparticle band
between the electron and hole. A diagramatic perturbatiognergies foigi(k) andEg;(k) from GW calculations’ These
theory approach first carried out by Sham and Rieweals €nergies compare very well Wlt'h the results of direct and
that (i,j;k|Vg|i’,j’;k') should involve the screened Cou- INverse photoem|35|_on for materials that are_not srongly cor-
lomb interactionW, while {i,j;k|VeJi’,j’ k') involves the relgted: Band energies are computed on a (_jlscrete mdsh of
bare interactiony (if Wis used in the exchange term, it turns POints in the first Brillouin zone, and for a finite number of
out that screening is double countedn principle,Wshould ~ valénce bandg and conduction bands LDA u functions
be time dependent. In practice, however, a statically screened?d band energies are computed efficiently using the basis
interaction is sufficient for the bulk systems that we stfify. St discussed in Ref. 7. When it is appropriate, LDA band
More will be said about the precise form ¥fthat we use in  €nergies are updated to include self-energy effects as dis-
a later subsection. cussed below.
Equation(8) (with interactionsv andW used in exchange
and direct termpis the Bethe-Salpeter equation. It is a secu-
lar equation for the electron-hole pair wave function, Hy;, is an attraction between the electron and hole and
#(i,j;K), and the pair energf. Two points are worth not- involves the screened Coulomb interactih Although the
ing: (1) The exchange term enters with a positive sign, whileexact form ofW is impossible to compute, we know that an
the direct term has a negative sign. Because both thapproximate statically screened interaction should satisfy the
screened and unscreened interactions are positive, this medo#iowing short-range and long-range limits:
that the exchange term israpulsionbetween the electron

V(x,y;R)=e%/|x—y+R| is the Coulomb interaction be-

2. Direct term Hy;,

and hole, while the direct term is attraction (2) For a real . e’
semiconductor or insulator, the characteristic magnitude of W(x—y;R=0)— Ix—y|’
the direct term is much larger than that of the exchange term.

This is because the direct integral involves products like e2
Uksq() Uik +q(X), which is large, becauseandi’ are W(x,y;RHw)em,

both conduction bandso the corresponding wave functions
should have appreciable overjafhe exchange integral in- wheree is the IR dielectric constafitin addition, the way in
volves products Iikeji’fkm(x)uj,k(x). Because is a conduc-  which the two limits are connected should depend on the
tion band and is a valence band, their corresponding wavebackground electron density.

functions have little overlap, and this term is small. Thus, for These requirements are satisfied by the static random-
a system with a notable difference between conduction anghase approximatio(RPA), although we use an approxima-
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tion to RPA in this work: the Hybertsen-Levine-Louie In practice, we are given the two-particle wave function in
model®!® This model has two parts. First, a function the (,j;k) basis, and it is necessary to transform it to the
Whon(T; p,€) is defined that represents the statically screenedx,y;R) basis before Eq14) is applied. This transformation
Coulomb interaction between charges separated Iy a  is the one of Eq(6). After the action byH 4, the inverse of
fictitious system witthomogeneoudensityp, and IR dielec- Eq. (6) is used to transform back to thé,);k) basis. The
tric constante. W, is constructed to give the RPA result mesh ofR vectors is chosen to be compatible with the mesh
for the electron gas whee=o0, and is required to satisfy of k points, so fast Fourier transforffFT) techniques can
known sum rules whea<«. An analytic form forW,,n, in be used in th&k— R andR—k parts of the transformations.
reciprocal spacéW,{Q;p.€)] is available’> Second, an We obtain theu; , andu; y functions[appearing in Eq(6)]
approximate form for the screened interaction ini@mmo-  from LDA calculations. In principle, we should use quasipar-

geneoussystem is written down as follow: ticle wave functions fronGW calculations, but because of
the computational difficulty of obtaining them for a large set
W(r,r")=3[Whon|r=r'[;p(r"),€) of k points, we choose not to do this. It has been shéain

W . 11 least for the few cases tesfgdhat LDA and GW wave
+Whond[r" = r[;p(r), )], (12) functions are quite similar, even when the corresponding
. - T band energies are quite different.
where p(r) is the position-dependent charge density in the .
p(n) P P g y One subtle point must now be addressed: In order for the

material. Ifr andr’ are both in regions of similar density, . - i : ; :
and if the region between andr’ is at that density, then (i.] ,k.)g(x,y, R) transfqrmatlon to be unitary, the following
' conditions must be satisfied:

W(r,r') should be very close to the RPA result. More im-

portantly, W(r,r’) satisfies the above short- and long-range

limits, irrespective of density. 2 ui*’k(x)ui,,k(x)z Siirs
In order to implement Eq11), Wyon(r;p,€) is computed X

from Wy,on(Q;p,€) for a range of densitie&and for the IR

dielectric c.onstant of the system of intejeby numerical > U (U ()=, 5,

integration: y

where we have usdd+ g~k. For infinite, continuous sets of
QW (Q:p€) x andy points, these orthogonality conditions are automati-
hom ¢ £ cally satisfied. For discrete sets »fandy points, however,
this is not the case. We enforce these conditions by viewing
sin(Qr) U, andu; as complex vectors with components;(x)
Q | andu; ,(y). A Gramm-Schmidt orthogonalization procedure
is then applied that enforces orthogonality. This is possible
(12 as long as the number of “vectors” is less than the “dimen-
sion” [i.e., the number of bands (j) is less than the num-
ber of real-space grid points (y)]. Orthogonalization aids
the convergence of the calculation with respect to the num-
ber of x,y points. We do not enforce unitarity of the
(x,y;R)—(i,j;k) transformation, becausey;| ) may con-
tain contributions from conduction bands not included in the
calculation.

3

d
Wmdhmd=f(%ﬂ3

2(1)\ [~
S HI

where €, (Q;p,€) is the Levine-Louie dielectric function
appearing in analytic form in Ref. 9. The ground-state elec
tronic charge density determined from the LDA is used for
p(r). By using a discrete mesh of vectorandy in the unit
cell, and a mesh of lattice vectoRs we can represew in

the (x,y;R) basis:

W(le; R) = %[Whom(|x_y+ R| ,P(Y),f)

+Whonlly—X—R[; p(x), €)]. (13 He, is a repulsion between the electron and hole and in-
volves the bare Coulomb interactidh Before discussing the
way in which this term is evaluated, the use of the bare
interaction must be justified. If an infinite number of one-
Hairl X, ¥; RY =W(X,y;R)[X,y; R). (14 electron bands is used in the calculation, then the work of
Sham and Rickshows that it is correct to use the bare in-
teraction in the exchange matrix elements. In practice, how-
ever, we use a finite number of conduction bands, and fewer
valence bands than there are electrons in the unit cell. Thus,
the subspace on whidH.¢ acts is smaller than the full space
of singly excited states. The correct interaction to uskl in
is therefore something lik¥/egg, Where egg is the back-
ground dielectric constant resulting from all transitions not
explicitly included. Instead of calculatingg, we simply set

(159 Vlegs=V, and converge the calculation with respect to the

number of bands. When our results become independent of

This integral is tabulated numerically for a range of densitiegthe number of bands we include, we are sure that we are
p. close to the limit,egg— 1.

3. Exchange term H,

H i is diagonal in this basis, so we have

Because one had/,,.(r;p,e)—e?/r for r—0, W(x=y;R
=0) diverges. We circumvent this problem by defining
W(x=y;R=0) to be the average &, over a sphere with
volume V, (the volume corresponding to one discrete
point):

2
X

1
W(x=y;R=0)= V_fv d3X1d3X2Whom(|X1_X2| ;p(X),€).
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In order to act withH,, on a state vector, we use the form ¢,(w)=—47

of V in reciprocal space:

2

47 e
V(G,G';q)=—+

Q m&;,e' =V(G;0)ds.6 s

whereG andG’ are reciprocal lattice vectors, afll is the
unit cell volume. If we have

Hexi’jE’k ¢<i,j;k>|i,1;k>=i§k £G.1K)1i,j3k),
then we have
£(1,J;K)
=2 3 w0 Z V@Y e VG,

(16)

where we have defined
Y(G)=2 Ui q(GUj (G—G).
GI

Since Y!(G) approaches zero fotG|—o faster than
1//G|?, andV(G,q) goes as 1G|?, Eq.(16) converges with
very few G vectors.

Given a singly excited stateS)=3; ; ((i,j;k)|i,j;k),
the action ofHg4=H 1.+ Hgi,+Hey 0N |S) is computed term
by term.H . is applied with Eq(10); Hy; is applied with Eq.
(14) together with the transformatig@and corresponding in-
verse transformatigrof Eq. (6); Hey is applied with Eq(16).

The vast majority of the computation time is spent trans-
forming from (i,j;k) —(x,y;R) and back again, in the evalu-
ation of H;|S). The number of operations required in this

time-consuming part is proportional mVNCN)Z(Nk, where

N, andN. are the numbers of valence and conduction bands,

andN, (=Ny) andN, (=Ng) are the numbers of andk
points.

D. Calculation of e5(w)

The imaginary part of the frequency-dependent long
wavelength dielectric function can be expressed in terms OE)e

the ground statg), the singly excited stateggigenstates of

Hew), |f), and the component of the macroscopic current

operator along the polarization direction; J:

4772 R
62(w):w—7T22f KfIR-3|0)Ra(w—Ey)

1 ~
=4m’y (E) KFIX-J|O)PS(w—Ep).  (17)
f

xX1m

<0|)A\"JHeff1( Heﬁlx"]|0>},

w—Hegstin
(18)

where 7 is a positive infinitessimal. We have used the com-
pleteness relatio¢|f)(f|=1 which applies in the space in
which Hg4 acts. We are now free to evaluate this ground-
state expectation value in any basis we choose. Because we
have access to the one-electron band states, we choose the
one-particle eigenstate basis:

>

ki k!

ex(w)=—4mIm (OIPTi,j;k)i,j;K|

[i7,375 k") KP0)

X(w—Heﬁ-H 7
(19

whereP=H; '\ -J is the polarization operatdt.

We make the replacemeniO|\-JH_i,j;k)=[E;(k)
—Ej(k)]*1<O|X~J|i,j;k). H,. involves the gquasiparticle
self-energy corrections for the electron and h@ee Sec.
IIC 1). As discussed by Levine and AlldAthis self-energy
operator is nonlocal. If we use LDA single-particle wave
functions forli,j;k), it is then necessary to make the re-
placement J—[E;(k) — E;(k) —Hi2* (k)] Y Ei(k) — E;(k)
—H«(k)]J, where H(k) denotes ak-p Hamiltonian,
H.odk)=e K "H,£*".1? The stated0) and|i,j;k) repre-
sent Slater determinants of single-particle orbitals, so we
have

1
EFPA(K) —E[PA(K)

(i.j:k[PlO)=

XJ d3ru (DR [V HERAK) =i k(1)

(20)
The k-space gradient is computed by finite differences. The
integral is then evaluated in reciprocal space, using the Fou-
rier components of the LDAI functions.
Defining |P)=P[0)=Z, ; «|i,j;k)(i,j;k|P|0), Eq. (19)
comes

(21)

—
w—Heggtin '
This can be evaluated iteratively using the Haydock recur-
sion method? For the first iteration, we sdtl)=|P), and
computeH ¢ 1) using the results of the previous subsection.
The expectation value is defined to be=(1|Hq1). We
next compute the vectdtlq¢/1) —a;|1). This vector would

be zero if|1) were an eigenvector dfi .. The norm of this
difference vector is set equal t;,=|Hgx/ 1) —ay|1)|. The

e(w)= —477Im[< P

E; is the energy of statd) (the energy of the ground state is normalized vector,b; *(Hes1)—a,|1)), is denoted|2).
set to zerp Instead of working with this sum-over- This completes the first iteration. In the second iteratin,

eigenstates expression, we choose to eliminate the sum ovand b, are computed froma,=(2|H2),

f altogether by transforming Eq17) into a form that in-
volves the ground state only:

and b,
=|Hei|2) —a,|2) —b4|1)|. The general form for thath it-
eration is
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an:<n|Heﬁ|n>, E. Analysis of e,(w) by spectral decomposition

The main advantage of the iterative scheme is that it is not
bn=[Hes|N) —a,|n)—b,_4|n—1)], necessary to compute eigenstates and eigenenergies in order
to determine the spectrum. However, this is also its major
In+1)=b; (Hegln) —ay/n) —b,_1|n—1)). (22) disadvantage. It is often desirable to know which single par-
ticle transitiond (i, j; k) pairg contribute to a peak i\a,(w).
The expectation value of the Green function can now bdt may also be of interest to know the spatial distribution of
written as a continued fraction, the electron and hole in this spectral region. Information of
this sort is not easily accessed in a scheme in whig) is
determined directly. In this section, we show that it is pos-
<P|<ﬂ)|P> sible to extract this information by using another iterative
@~ He ™17 technique. The computation time is comparable to that of the
1 scheme discussed above, provided that one is interested in a
= > . (23)  single narrow-energy window.
b1 Consider the singly excited sta® (w)) defined by
_ b3
TR e e Iq>(w>>=—2m H*1X~JIO>=—NW_” P)
w—Hegtin ©f o—Hegting' 7
The number of “levels” in this fraction is equal to the num- (25
ber of iterationsN;,,. The question of how to terminate the o
calculation is an important one. Methods of varying sophislt can be shown tha¢;(w) is just the square of the norm of
tication have been used; we use the least sophisticated, Ris state{®(w)|®(w)). If we know|®(w)) in the (,j;k)
which (a,.b,) = (a, by, ) for all n>Nie,. A simple ana- ~ basis, then we can write

iter

lytic form for the termination can then be derivEEach
iteration computes various® moments ofe,(w). For in-
stance, from Eq.(21) and the definitiona;=(1|Hcq|1)

(1)+i77_a.1_

€2(0) = (P ()| P(w))

=(P|H¢4P), it can be shown that one hasw#a, =(D(w)|| 2 [i.]:k)i.j:kD|P(w))
=4 “dowey(w). hk
The advantage of using an iterative technique is twofold. o 5
First, the Hamiltonian matrix never needs to be computed in =”2k [(i,] ;K| (w))]2. (26)

any one basis, since all that is required is to compute the

Hamiltonian acting on a vector. This reduces computatiorEach term in the rightmost sum in E(26) involves a par-
time, becausdﬂeﬁ| ) mvolv_es a sum over one expansion ticular (i,j;k) configuration. Thus,e,(w) is decomposed
coefficient, while{ ¢|Heq ) involves the simultaneous sum into individual interband transitions.

over two coefficients. Second, the number of iterations The statd®(w)) can be computed by rewriting E65)

needed to compute,(w) depends mostly on the size of the go that|/®(w)) is the solution to a linear system of equations
broadening parametey and is roughly independent of the of the formAx=b:

dimension of the Hamiltonian. As long agis greater than

the characteristic level spacing Bif;, the iterative scheme (@—Heg+i7)|®(w))=2m7y|P). (27)

is more efficient than standard diagonalization. SiNgg is

roughly independent of the dimension, the total number ofGiven|P), |®(w)) is determined iteratively by first guess-

operations is proportional to the number of operations peing a solution, and then modifying the guess by computing

action ofH . From above, this isl,N,NZN,. If there areN  (w—Heg+i7%)|®9®Fw)) and comparing to gm7|P). As

atoms per unit cell, one has,,N.,N,><N, while one has before, the calculation only involves the actiontbf; on a

N,— constant, so the calculation as a whole scaleN‘as vector, rather than the computation B in some basis,
This method of computing a spectrum within linear re- followed by inversion. The number of iterations needed de-

sponse is completely general; any operator could be used pends ony, and the distribution of eigenvaluesldf in the

place ofP in Eq. (21). It is even possible to compute the total neighborhood ofv. Care must be taken when dealing with a

density of excited states as followSconsider the operat®  non-Hermitian operator likeos—Hqy+i7. The generalized

having the property minimal residual methodGMRES is suited to this task®

Once |®(w)) is known in some basis, it can be trans-
. formed to any other, to allow for different decompositions of
R|0>:|R>:ijzk expl i jli,5:K), (24) €,(w). For instance, Eq(6) can be used to decompose
- €,(w) into individual (x,y;R) contributions:

where ¢, ;  are random numbers between 0 and. ZThus,

R acts on the ground state to createimcoherent(but equal ]

probability) superposition of electron-hole pair excitations. If GZ(M):XgR [xy; R ® (@) (28)

IR) is inserted in place ofP) in Eq. (21), the resulting

spectrum is proportional to the total density of states|t should be kept in mind that in order to do a spectral de-

D(w)=2;8(w—Ejy). composition of this type, an iterative computation must be
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done foreachvalue ofw. It is usually best to compute(w) 12 - - .

first, and then decide on specific spectral regions for which to w-GaN, Elc

perform the decomposition. 10 - 7
In addition to being computationally usefip (w)) also

has an important physical interpretation. The interaction of a 8 T

photon with the electrons in a solid can be viewed as occur-
ing in two steps. First, the photon creates an electron-hole
pair by polarizing the material locally. This results in the

electron-hole pair stat€?|0)=H4 A -J|0)=|P). Second, 4r
the localized electron-hole pair decays rather, disperses

g(w)
(=)}

into more delocalized stationary statéslectron-hole pair 2r i
eigenstates, such as excitorihis decay is governed by the s . .
eIe_ctron—hoIe propa_gator,w(— I—_|eff+i 7). The re_su_lting 0 0 5 10 15 20
pair state, o —Hq+i7) Y P), is equal to ®(w)) within a Photon Energy (eV)

constant of proportionality. Because we haws(w) _ _
=<<I>(w)|<b(w)>, this pair state iglirectly relatedto what is FIG. 2. Calculatete,(w) for E perpendicular ta for wurtzite
measured in optical absorption, reflection, and eIIipsometr)S?’aN' The solid line includes the electron-hole interaction, while the
experiments. Thus, the physics of optical properties is that of2Sn€d line is the result of one-electron theory.

mutually localized electrons and holes spreading apart. Notgity are performed at the experimental lattice constants

that|®(w)) is not an energy eigenstate, and that no single=3.16 andc=5.13 A, and internal bond-length parameter

electron-hole pair eigenstate is sufficient to capture all thei=0.37722In this and all other calculations presented in this

features of ®(w)). work, spin-orbit coupling is neglected. The conduction bands

are shifted up to move the band géjrect, and a&% from

the LDA value(2.69 e\) to theGW value of 3.5 eV.° LDA

lll. RESULTS AND DISCUSSION valence and conduction bands are stretched by 12% and 17%
A. GaN to mimic theGW bandwidths. The IR dielectric constaat

used in the screening modélq. (12)] is taken to be 5.5% It

GaN is a tetrahedrally-coordinated material with a direCtgy, 14 pe noted that, in the wurtzite structure, there are two
band gap between 3 eV and 4 eV. It comes in two varietiesgjtferent principle components of the static dielectric tensor
wurtzite (hexagonal, four atoms per cglland zinc blende (corresponding t& perpendicular to the axis, andE par-

(cubic, two atoms per cgll The zinc-blende phase is cur- 4y tg thec axig). The difference between the components is
rently the more difficult to grow, and has not been studied agq,ghly 109, so we take a directionally averaged value to be
extensively as the wurtzite phase. Because of their banggqq in the screening model. Calculations

gaps, both phgses are being considered for use as optoel%q-ez(w) are performed wittN, =600 (10<10X6 mesh,
tronic devices in the blue/UV spectral range. Efforts to de-y 45 (3x3x5 mesh, N, =8, N.=8, and N, =150
termine their intrinsic optical properties in this range include; S, er

reflectivity measurementsand spectroscopic ellipsometry e,(w) has two principle component& perpendicular te,

i (o 18-20
performed with synchrotron radiatidfi andE parallel toc. The polarization directions are specified
Although these measurements have led to a better undey-

standing of the optical properties, both suffer from deficien-by the direction ofa in the transition-matrix elements of Eq.

cies. Reflectivity must be coupled with a Kramers-Kronig 'F' 2 sh h lcul for E dicul
transform to determine;(w) or e,(w), and this introduces igure 2 shows the calculateg(w) for E perpendicular

[N . : : . to ¢ for wurtzite GaN. The solid line includes the electron-
ambiguity into the analysis. Spectroscopic ellipsometry di- ) - . T
gurty Y P P P Y hole interaction, while the dashed line is the result of one-

rectly determineg;(w) ande,(w), but the synchrotron light lectron theonjobtained by neglectingly, andH., in Eq.

is contaminated by second-order radiation in certain energ 9. Th i fthe el hole i .
regionst®1° Finally, sample quality is always an issue. It has )]. The net attraction of the electron-hole interaction moves

been suggested that surface roughness is responsible for &s_::illator streng_th _ﬁo Iowerq frequ;encies_. The onféegllecotron re-
creased intensity in reflectivity and ellipsometry SU/tS are very similar to those of previous workers. Our

measurementy 1 results including the electron-hole interaction look very simi-

In this section, we present the results of our calculationdd’ 10 €2(®) deoluc_ed from a Kramers-Kronig transform of
of e;(w) for wurtzite and zinc-blende GaN in the spectral re_flect|V|ty datal._ F|gure 3 shows our_r_esults plotied t_ogether
range hw=0-20 eV. We show that the inclusion of the with the reflectivity data. Peak positions and relative peak
electron-hole interaction shifts oscillator strength to lower€IgNts are reproduced wéfput the average magnitude of

frequencies, bringing the shape of the calculated spectrur?lur calculatede,(w) is ~50-100 % too high compared to

into better agreement with the experiments. However, a§Xperiment. This is also true when comparing to ”‘13 spectro-
found in previous calculationd;? the overall magnitude of SCOPIC €llipsometry experiments of Logothetiéisal.™ and

19 ; A
e,(w) is too large when compared with experiment. Welt7hkampet al. FOHOW'.ng the reasoning in 'Lambrecbt_
al.,”" we suspect that this may be an experimental artifact.

The GaN films may have appreciable surface roughness,

which scatters light, resulting in decreased intensity in reflec-
Pseudopotential LDA calculations for the single-particletivity and ellipsometry measurements. In Wethkaetal,, it

wave functions, band energies, and ground-state charge deis- explicitly demonstrated that increased surface roughness

The broadening parametes, is chosen to be 0.2 eV. The

1. Wurtzite
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FIG. 3. Calculatede,(w) for E perpendicular ta for wurtzite FIG. 5. Calculatede,(w) for zinc-blende GaN. The solid line
GaN including the electron-hole interactigsolid line), and mea- includes the electron-hole interaction, while the dashed line is the
surede,(w) from Ref. 17. result of one-electron theory.

. . . ction or valence bands. The IR dielectric constant used in
ives rise to a decreased magnitude for the measur %t’ . . .
gz(w).lg We stress that our previ?)us calculationsegf w) et:glszcréaseg gi |8nter:1aecstlr;)n Il\ls ia2k76 n(?:(; :? i ;3 'Wr'\]/qisgsemk
including the electron-hole interaction for diamond, Si, Ge s B

: >%1=4, N.=8, Nj,=150, andp=0.2 eV
and GaAs(Ref. 5 gave results in excellent agreement with Figucre 5 shlc;?/rvs the calcu?ate@(w) for zinc-blende GaN

experiments, both for peak positions and average peajciyding the electron-hole interactiaisolid line), and ne-
heights. , glecting it (dashed ling As for wurtzite GaN withE||c, the
Figure 4 showse,(w) for E parallel toc for wurtzite  result of the interacting theory shows a large peak at
GaN. The solid line includes the electron-hole interaction,~7 eV. Note that the electron-hole interaction shifts the
and the dashed is one-electron theory. The major absorpti§eak positions as well as the peak heights. Noninteracting
feature is a large peak at 6.9 eV. This is to be compared witheaks at 8.2 eV, 10.8 eV, and 12.6 eV are shifted to 6.8 eV,
the three distinct peaks of lower intensity between 6 eV andg.2 ev, and 12.3 eV. The peak heights decrease with in-
10 eV in theEL c case. Similar polarization-dependent spec-creasing energy in both noninteracting and interacting re-
tral features have been observed in other wurtzite structurgyits, but the decrease is more pronounced in the interacting
semiconductors, such as CdS and CEfSEo the best of our case. The net effect of the interaction is to shift oscillator

knowledge, the UV optical properties of wurtzite GaN with strength to lower energies, as for wurtzite GaN. Eaéw)

E[|c have yet to be measured. for zinc-blende GaN has been measured by spectroscopic
_ ellipsometry?® These authors obtain three distinct peaks at 7
2. Zinc blende eV, 10.6 eV, and 13 eV, with the 13-eV peak being lower in

We perform calculations at the experimental lattice condntensity than the first two. Although the electron-hole inter-
stant a=4.50 A ? Conduction bands are shifted up to action moves the lowest-energy peak into better agreement
move the band gafdirect, and afl’) from the LDA value with experiment, the other two peak positions seem to be in
(2.1 eV) to the GW result of 3.1 eV The LDA andGW  Worse agreement. As for wurtzite GaN, the overall magni-

bandwidths are quite close, so we choose not to stretch cofWde of the calculated,(w) is larger than that of the experi-
mental results.

With the electron-hole interaction having such an appre-
ciable effect, it is natural to ask: What gives rise to such a
large shift in oscillator strength? From Ed.7), we see that
two factors determine the spectral features: the excitation

energiesE; and the transition-matrix element{$|X - J|0).
Using the discussion surrounding Eg4), we can calculate
the total density of excited statd3(w) =3 5(w — E¢), with
and without the electron-hole interaction. Figure 6 shows the
results for zinc-blende GaN. Interacting and noninteracting
D(w) are almost identicdll Thus, the excitation energies
are essentially unchanged. This is reasonable, for the scale of
. the electron-hole interaction is set by the exciton binding
0 = ' ' energy in the material. For GaN, this is on the order of tens
0 5 PhotonEln(érgy ) 15 20 of meV 28 which is small on the scale of many eV. The
difference between interacting and noninteractsfw) is
FIG. 4. Calculatedt,(w) for E parallel toc for wurtzite GaN.  therefore due to the transition-matrix elements. Although the
The solid line includes the electron-hole interaction, while theelectron-hole interaction does not change the electron-hole
dashed line is the result of one-electron theory. pair energy by much, the pair wave function is changed

12

10 -

£,(w)
N




PRB 59 Ab initio CALCULATION OF €,(w) INCLUDING . .. 5449

z-GaN

D(E) (arb. units)
[ K|®(@))I (arb. units)

0 5 10 15 20 5 6 7
E V) E(K) - E(K) (V)

FIG. 6. Total density ofsingly) excited states for zinc-blende FIG. 7. i.j;k|®(hw=6.7 eW)|* vs E;(k)—E;(k) for zinc-
GaN. The solid line includes the electron-hole interaction, while theblende GaN for noninteractingdashedl and interacting(solid)
dashed line is the result of one-electron theory. cases. Eacli,j;k|®(ho=6.7 eV)|* has been broadened by a

Lorentzian with a full width at half-maximum of 0.2 eV so that a
enough to affect these matrix elements a great deal. Thismooth curve is obtained.
subtle but important effect is responsible for much of the _ )
discrepancy between one-electron theories of optical propefdge is well in the UV. Cafoccurs naturally, so measure-
ties of semiconductors and experimefitéMore will be said ~ Ments of optical properties have been available for decades.
about the origin of this effedias pertaining to insulatorén One of the earliest studies of the UV optical properties is the
the next subsection. reflectivity measurement of R. Tous8wsing the technique

To get insight into the origins of peaks ie(w), we of photographic photometry. This work! together with later
can use the results of Sec. IlE to decompeséw) into studies’! reveals the pressgnce of an exciton at 11.2 eV. More
individual interband transitions. We focus on the first majorre_cen_t work of Bartfet al™ uses spectroscopic ellipsometry
peak in zinc-blende GaN. Choosiny, =512 (8<8X8 with light from a synchrotron source to measutgw) and
mesh, N,=27 (3x3x3 mesh, N,=4, N.=8, and 7 e,(w) directly. The exciton is not clearly resolved in their
—02 eVX |D(hw=6.7 eV))is c,omr\;ute(’j ch ar;alyzing its Work, because the peak is in an energy range that is contami-
corﬁpone’nts in the i (i:k) basis, we find thate, (7 o nated by second-order diffracted light. In this section, we
—6.7 eV) is composea primarilg/ of transitions betweenPresent our calculategh(w) for CaF, including the electron-

bands 3,4admixture of Ga 4p and N 2p— band 5(admix- hole interaction. Results are compared to those of the two
ture of Ga 4s and N 2sSince excitation energies are almost ex;i)/srlmen]:[s. lculati tth . tal latii
unchanged by the electron-hole interaction, this conclusion € perform caiculations at thé experimental 1atlice con-

: - - ta=5.46 A 2> The LDA andGW values for the band
could have been reached by decomposing the noninteracti an X
e,(w).Y7 However, valuable insight into the effects of the 9P ar€ 6.77 eV and 11.38 eV, respectivEiBecause the

; ; ; ; P GW gap is roughly 0.4 eV smaller than the gap inferred from
interaction can be obtained. Figure 7 shojisj;k|® (% w : o . .

=6.7 eV))|? plotted against thenoninteractingexcitation eXpe”miﬂﬁthWQ Sh'f.t thet II‘DA lconduct|on fbffgs {J/p_rtro].
energy E;(k) —E;(k), for noninteractingdasheg and inter- f’:\g_reet_f\{wd b Ie expﬁrlmen al minimum gaplto i © V. 'f
acting(solid) cases. Each ordinate in the plots represents th Justilied below when comparing our resuits to experiment.
square of a particulari (j;k) component of ®(w)), i.e., a DA valence bands are stretched by 186nduction bands

term in the sum of Eq(26). The nonzero width of the dis- are un;tretchedto agree with GW bandwldths. .The. IR
tribution for the noninteracting case is due to the nonzgro dielectric constant used in the screened interaction is taken

2 —
Note that for the interacting case, weight is shifted to higheF0 be 2.03% We use N, =512 (8x8x8 mesh),N,

noninteractingenergy. Thus, states of higher noninteractingim3 (4\>/<2ﬁ><4 mesh), Ny=8, Ne=8, Nie=150, and 7
energy are used to create states that take better advantage_o?‘. ev. . .
Figure 8 shows the calculateg(w) for CaF, including

the attractive electron-hole interaction. This is perfectly rea- . . A ) i
P y he electron-hole interactiofsolid line), and neglecting it

sonable, for the noninteracting ener lays the role of th : ) ; . .
kinetic energy of the electron—gole pgi)rlig tﬁ/e effective-mas dash_ed ling The_dlfference between interacting and nonin-
approximation. Because kinetic energy must increase in ofleracting results is far more p_ronounged .than for GaN. Th|§
der for the pair wave function to localize, the presence of theS becguse the electron-hole Interaction is muph stronger in
interaction leads to an increase in this noninteracting excita'—nsuI.at'ng 'systems(due to less scrgemblgAﬂ !mportant
tion energy. manlfestatlon o_f the strength of the interaction is Fhe peak at
11.1 eV. This is an exciton peak. The large height of the
B. CaF peak results from the large transition-matrix element that
' 2 couples the photon to a localized electronic excitation. Since
CakF, is a highly ionic material that crystallizes in a cubic the band gap is 11.8 eV, the calculated exciton binding en-
structure with one Ca and two F atoms per celllled the ergy is 11.8-11.1 e¥0.7 eV. Figure 9 shows our results
calcium fluoride structupe Because of its ionicity, the band including the interaction(solid line), together with e;(w)
gap is largg ~11.8 eV (Ref. 29] so its optical absorption deduced from the reflectivity measurementRfTousey*°
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FIG. 8. Calculated,(w) for CaF,. The solid line includes the
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FIG. 10. Calculate@,(w) for CaF, including the electron-hole

electron-hole interaction, while the dashed line is the result of oneinteraction(solid line), and measured,(w) from Ref. 32.

electron theory.

tribution of the electron and hole in this spectral region is of

The agreement is good overall, despite the fact that there ajaterest. UsingN,=512 (8x8x8 mesh),N,=64 (4x4
very few experimental points. One notable discrepancy is thex4 mesh), N,=8, N.=8, and 7=0.3 eV, |®(w)) is
amount of oscillator strength in the exciton peak. The aregalculated in thei(j;k) basis. Eq(6) is then used to trans-

under the peak is larger in the experiment than it is in theform |®(w)) into the (x,y;R) basis, from which we deter-
theoretical results. This has been observed before foP liF. mine an average electron-hole separation:

should be noted that our model for the screened electron-hole

interaction is expected to break down somewhat for small
electron-hole separations in inhomogeneous systems. T
exciton in Cak has charge-transfer character, so the averag
electron-hole separation should be on the order of a fe
bond lengths. We suspect that using the full RPA screenin
should lead to better agreement. The calculated exciton pe

d(w)=(P(w)|[x=y+R||P(w)).
We find thatd(Aw=11.1 eV)}=4.0 A. This is significantly

he
warger than the Ca-F nearest-neighbor distance of 2.4 A, and

very close to the Ca-Ca nearest-neighbor distance of
9 A. However, it is still somewhat smaller than a typical

position, 11.1 eV, is very close to the observed peak pOsitioﬁlect_ron—hole separation for an e;<4citation in the contin_uum;
of 11.2 eV33L We stress that this close correspondence beWe find d(Aw=13.0 eV)=4.7 A it should be kept in
tween theory and experiment is facilitated by the use of thaind that|®(w)) is not an electron-hole pair eigenstate, but

experimentally determined band gap. If &BW gap is used,

is a pair state created by the perturbing radiation field. Eigen-

the exciton peak position is 10.7 eV, 0.5 eV lower than theStates with energies in the continuum are expected to be very
experimental result. Figure 10 shows our calculated resultdélocalized. Another point of interest is that while continuum
(solid line) together with the spectroscopic ellipsometry data€'9enstates are relatively unaffected by the electron-hole in-
of Barth et al*2 Theory and experiment do not agree well teraction, continuun{®(w)) pair states are very affected
below ~14 eV, but seem to agree at higher energies. Notéthe ~noninteracting _electron-hole  separatiorty(fi »

that the one-electron results shown in Fig. 8 do not ever 13.0 €V), equals 7.7 A as compared to 4.7 A for

agree qualitatively with either experiment.
Because the electron-hole interaction in gaf large

d(w=13.0 eV)]3* This is to be expected, because
€:(w)=(D(w)|P(w)) is strongly affected by the interaction

enough to lead to a substantial exciton peak, the spatial digt all w. Finally, we note that the magnitude df«) for all

4 T T T T T
CaF,

3 L -
3 2f ;
S

1H ]

0 1 1 1 1 1

8 10 12 14 16 18 20

Photon Energy (eV)

FIG. 9. Calculatede,(w) for CaF, including the electron-hole

interaction(solid line), and measured,(w) from Ref. 30.

o is largely governed by the localized nature of the stBfe
[see Eq(25)]. We find that P||x—y+R||P)=2.75 A, only
slightly greater than the Ca-F nearest-neighbor distance.

IV. CONCLUSIONS

We have presented a computationally efficient scheme for
calculatinge,(w) for crystalline semiconductors and insula-
tors, which includes the electron-hole interaction. The effi-
ciency results from an iterative method of computing the
spectrum, which does not require the calculation of energies
or wave functions. Each iteration involves an action of the
effective Hamiltonian(including the electron-hole interac-
tion) on an electron-hole pair state. Actions are simplified by
representing these states in bases that diagonalize different
terms in the Hamiltonian.

The scheme has been applied to the wide-gap semicon-
ductor GaN(both wurtzite and zinc blendieand the ionic
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insulator Cak. In both cases, the inclusion of the electron-blende which show a larger overall magnitude for the di-
hole interaction greaﬂy improves the agreement betweeﬁlectric function, closer to our theoretical resultee Ref.
theory and the available experiments. By focusing on the3D)-
discrepancies, we are led to suggest that optical experiments
on GaN may be strongly affected by surface roughness
and/or noncrystallinity. Also, we suspect that the Hybertsen- We thank M. Rohlfing, S.G. Louie, Z.H. Levine, B. Seg-
Levine-Louie model for screening the electron-hole interac-all, A.J. Fischer, T. Wethkamp, R. Gupta, R.B. Bohn, C.W.
tion suffers from inaccuracies when applied to very insulat-Clark, and B. Schneider for helpful discussions. Many thanks
ing materials. Finally, our results support the experimentallygo to J. Rife for providing us with the experimental data
inferred band gap of 11.8 eV for CaF appearing in Fig. 3. We extend special thanks to W.R.L.

Note added in proafWe are now aware of more recent Lambrecht and M. Cardona for their interest and insight dur-
ellipsometry measurements on Ga(Wurtzite and zinc ing many stages of this work.
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