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Ab initio calculation of e2„v… including the electron-hole interaction:
Application to GaN and CaF2
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We present a computationally efficient first-principles scheme to calculatee2(v) for crystalline insulators,
including the electron-hole interaction. The effective Hamiltonian for electron-hole pairs contains both the
exchange and direct parts of this interaction. An iterative scheme is used in which thev moments ofe2(v) are
computed by repeated action of the Hamiltonian on electron-hole pair states. The scheme is applied to two
insulators where there are significant experimental uncertainties in their ultraviolet optical properties: GaN and
CaF2 . @S0163-1829~99!08507-0#
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I. INTRODUCTION

It is a goal of present day materials theory to relate m
terials properties to microscopic or atomistic descriptions
matter. First-principles~or ‘‘ ab initio’’ ! theories, in which
the only input is the identity of the atomic constituents a
fundamental constants, have succeeded in predicting s
tural and vibrational properties, as well as ground-state e
tronic properties~such as the electron density!. These prop-
erties are determined quite accurately in effective o
electron mean-field theories, like the local-dens
approximation~LDA !.1 In these theories, each electron fee
an orbital-independent potential and is represented by a
particle wave function,c(r ). For properties involving elec
tronic excitations, however, mean-field descriptions can
to give quantitatively accurate results. An example is dir
and inverse photoemission, where single electrons or h
are added to the system. Here, it is necessary to dress
added electron or hole with the polarization cloud of t
surrounding ‘‘unexcited’’ electrons, as in a quasipartic
calculation.2 In quasiparticle theories, electrons feel
orbital-dependent potential, but each is still described b
one-particle wave function.

For the case of optical properties, the situation is m
extreme. Here, a photon interacts with the system to prod
an electron-hole pair. In addition to interacting with the
respective polarization clouds, the excited electron and h
interact strongly with each other to produce bound sta
~excitons! and above-threshold resonances. These eff
cannot be modeled in an effective one-particle picture.
stead it is necessary to deal with two-particle stat
c(re ,rh), wherere and rh are the positions of the excite
electron and hole. Although the importance of the electr
hole interaction in optical absorption has been understood
decades,3 first-principles calculations of optical properties i
cluding the electron-hole interaction have only recently
gun to appear.4–6 In these theories, individual quasielectro
and quasihole states are determined in an LDA/quasipar
approach, and then quasielectron-quasihole pair states ar
termined by solving the Bethe-Salpeter equation with an
propriately screened Coulomb interaction. These electr
hole pair states are then used to construct the freque
dependent imaginary part of the dielectric function,e2(v).
Results obtained so far for semiconductors and insula
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agree extremely well with reflectivity and ellipsometry da
for these materials.4–6

Not surprisingly, the computations are quite demandi
This is because each pair state wave function depends u
two variables,re andrh , so the resulting eigenproblem has
dimension}N2, whereN is the number of atoms. In a stan
dard approach,4,6 the Bethe-Salpeter equation is solved f
the electron-hole pair state wave functions and energ
which are then used in a sum-over-states expression to
terminee2(v). Such a method requires}(N2)35N6 opera-
tions.

In this work, we present the details of our scheme
computee2(v) for crystalline materials. Instead of solvin
the Bethe-Salpeter eigenproblem, we directly determine
ferent v-moments ofe2(v) by repeatedly acting with the
effective Hamiltonian extracted from the Bethe-Salpe
equation.5 Individual actions of the Hamiltonian are simpl
fied by using two different bases in which to represe
electron-hole pair states: thereal-space basis, and theone-
particle eigenstate basis. This results in a method that scale
as N4. We apply this method to the crystalline insulato
GaN ~wurtzite and zinc blende!, and CaF2 . Both materials
are used in optical technology~GaN for blue/UV optoelec-
tronic devices, and CaF2 for UV optics!, yet neither is fully
understood experimentally. We endeavor to resolve som
these difficulties by comparing our results to the availa
experiments.

The remainder of the paper is organized as follows: S
tion II contains the basic theory and the details of the co
putational method. Section III contains the results for wur
ite and zinc blende GaN, and CaF2 , together with a
discussion of their application to the interpretation of expe
mental data. We conclude in Sec. IV.

II. THEORY AND METHOD

In this section, we discuss the theory and computatio
method used to calculatee2(v) including the electron-hole
interaction. The discussion is divided into five subsectio
The first describes the space of singly excited electron-h
pair states, together with the bases we use to represent t
The second contains the equation of motion for the electr
hole pairs. The third presents a detailed treatment of the
fective Hamiltonian that is extracted from the equation
motion, and a description of the individual terms. The fou
5441
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5442 PRB 59LORIN X. BENEDICT AND ERIC L. SHIRLEY
presents the iterative scheme to calculatee2(v) by acting
with the effective Hamiltonian. The final subsection d
scribes a computationally efficient way of decompos
e2(v) into contributions arising from individual interban
transitions.

A. Excited electronic states

Our treatment of optical absorption~which follows that of
Ref. 3! is based on the following simple picture: Before
photon is absorbed, the solid is in its ground state. We
glect phonons in this work, so the ions are taken to be fi
in their equilibrium lattice positions. Thus, we are unable
treat the decay of excited electron-hole pairs due to elect
phonon scattering, and our calculations are restricted to
temperature. The solid’s ground state,u0&, is then the elec-
tronic ground state, which we assume to be a spin sing
and represented by a single Slater determinant of occu
valence orbitals:

u0&5S)
v

av↑
† av↓

† D uvacuum&. ~1!

When a photon is absorbed, an electron is promoted from
valence band to the conduction band, leaving a hole beh
An excited state, denoted byu f &, is singly excitedand there-
fore contains one electron-hole pair: (ac↑

† av↑1ac↓
† av↓)u0&

5uc,v&. Henceforth, we suppress spin indices, and cons
only spin singlets; any product of the forma†a is taken to
meana↑

†a↑1a↓
†a↓ . Because of the electron-hole interactio

a given (c,v) pair is not an energy eigenstate. Instead,u f & is
a superposition of all possible (c,v) pairs:

u f &5(
c,v

c~c,v !ac
†avu0&5(

c,v
c~c,v !uc,v&. ~2!

The expansion coefficient,c(c,v), can be viewed as the
electron-hole pair wave function in theone-particle eigen-
statebasis. Another basis which is of use is thereal-space
basis, in which the electron and hole are each located
positions in the solid:

u f &5 (
re ,rh

c~re ,rh!are

† arh
u0&5 (

re ,rh

c~re ,rh!ure ,rh&. ~3!

Restricting the disscussion to crystalline solids, Eq.~2! can
be rewritten as

u f &5 (
i , j ,k

c~ i , j ;k!ai ,k1q
† aj ,ku0&5 (

i , j ,k
c~ i , j ;k!u i , j ;k&,

~4!

wherei andj are electron and hole band indices, andk is the
wave vector of the hole~the wave vector of the electron i
k1q, where\q is the miniscule photon momentum!. Like-
wise, Eq.~3! can be rewritten as

u f &5 (
x,y,R

c~x,y;R!(
R8

exp~ iq–R8!ax1R1R8
† ay1R8u0&

[ (
x,y,R

c~x,y;R!ux,y;R&, ~5!
-
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wherex and y are the positions of the electron and hole
their respective unit cells, andR is the lattice translation
vector separating the cells. In Eq.~5!, the indicated Bloch
sum overR8 insures that the total crystal momentum of t
pair is always\q. Note that the arguments in the triple
( i , j ;k) and (x,y;R) are closely related to each other. In pa
ticular, R is the Fourier transform conjugate ofk. Figure 1
shows a pictorial representation of the two bases.

It is often necessary to transform from the (i , j ;k) basis to
the (x,y;R) basis and vice versa. This is accomplished w
the transformation law,

c~x,y;R!

5(
i , j

E d3k

~2p!3
eik•~x2y1R!ui ,k1q~x!uj ,k* ~y!c~ i , j ;k!,

~6!

whereui ,k1q(x) anduj ,k* (y) are the periodic parts of Bloch
functions for the electron and hole. The inverse transform
tion is also easily written down.

B. Bethe-Salpeter equation

The equation that the electron-hole pair wave funct
satisfies can be derived from the equation of motion for
electron-hole pair creation operator:

^Cu@H,ac
†av#uC0&5E^Cuac

†avuC0&. ~7!

Here,uC& is an exact excited state of energyE, uC0& is the
exact ground state with energy set to zero, andH is the exact
many-body Hamiltonian. If we replaceuC0& by u0& of Eq.
~1!, anduC& by theu f & of Eq. ~4!, we obtain the approximate
equation of motion for the electron-hole pair in the (i , j ;k)
basis:

FIG. 1. Pictorial representations of (i , j ;k) and (x,y;R) bases.
The curves on the left-hand side represent one-electron bands
the dashed boxes on the right-hand side represent unit cells.
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@Ei~k1q!2Ej~k!2E#c~ i , j ;k!

52 (
i 8, j 8

E d3k8

~2p!3
@2^ i , j ;kuVexu i 8, j 8;k8&

2^ i , j ;kuVdiru i 8, j 8;k8&#c~ i 8, j 8;k8!. ~8!

Ei andEj are one-electron band energies. The direct ma
element,̂ i , j ;kuVdiru i 8, j 8;k8&, is given by

(
R

E d3xE d3ye2 i ~k2k8!•~x2y1R!ui ,k1q* ~x!uj ,k~y!

3V~x,y;R!ui 8,k81q~x!uj 8,k8
* ~y!,

while the exchange matrix element,^ i , j ;kuVexu i 8, j 8;k8&, is
given by

(
R

E d3xE d3ye2 iq•~x2y1R!ui ,k1q* ~x!uj ,k~x!

3V~x,y;R!ui 8,k81q~y!uj 8,k8
* ~y!.

V(x,y;R)5e2/ux2y1Ru is the Coulomb interaction be
tween the electron atx1R and the hole aty. Both terms
describe the scattering of pair (i , j ;k) into pair (i 8 j 8;k8).

Note that the interactionV that appears in the matrix ele
ments is unscreened. This is somewhat unphysical. The
cited electron and hole move within a sea of all the ot
electrons in the system. These other electrons form a po
izable medium that should screen the Coulomb interac
between the electron and hole. A diagramatic perturba
theory approach first carried out by Sham and Rice3 reveals
that ^ i , j ;kuVdiru i 8, j 8;k8& should involve the screened Cou
lomb interaction,W, while ^ i , j ;kuVexu i 8, j 8;k8& involves the
bare interaction,V ~if W is used in the exchange term, it turn
out that screening is double counted3!. In principle,W should
be time dependent. In practice, however, a statically scree
interaction is sufficient for the bulk systems that we study.4–6

More will be said about the precise form ofW that we use in
a later subsection.

Equation~8! ~with interactionsV andW used in exchange
and direct terms! is the Bethe-Salpeter equation. It is a sec
lar equation for the electron-hole pair wave functio
c( i , j ;k), and the pair energyE. Two points are worth not-
ing: ~1! The exchange term enters with a positive sign, wh
the direct term has a negative sign. Because both
screened and unscreened interactions are positive, this m
that the exchange term is arepulsionbetween the electron
and hole, while the direct term is anattraction. ~2! For a real
semiconductor or insulator, the characteristic magnitude
the direct term is much larger than that of the exchange te
This is because the direct integral involves products l
ui ,k1q* (x)ui 8,k81q(x), which is large, becausei and i 8 are
both conduction bands~so the corresponding wave function
should have appreciable overlap!. The exchange integral in
volves products likeui ,k1q* (x)uj ,k(x). Becausei is a conduc-
tion band andj is a valence band, their corresponding wa
functions have little overlap, and this term is small. Thus,
a system with a notable difference between conduction
ix
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valence state character~i.e., a system with a gap!, the net
electron-hole interaction is attractive and favors excito
binding.

C. Effective Hamiltonian

Because the Bethe-Salpeter equation is a secular equa
one can extract an effective Hamiltonian from it so that E
~8! is of the formHeffc5Ec. It is important to understand
thatHeff is different from the exact many-body Hamiltonia
H, which appears in Eq.~7!. In particular,Heff acts only on
the space ofsingly excited states. From the form of the
Bethe-Salpeter equation,Heff has three terms:

Heff5H1e1Hdir1Hex. ~9!

We now discuss each term in the order of its importan
~magnitude!.

1. One-electron term H1e

H1e is most easily defined by the way it acts on a ba
vector in the one-particle eigenstate basis:

H1eu i , j ;k&5@Ei~k1q!2Ej~k!#u i , j ;k&. ~10!

This difference of one-electron band energies is just the
citation energy in the absence of the electron-hole inter
tion. Because the photon wave vectorq is small compared to
the characteristic Brillouin-zone length, we replaceEi(k
1q) by Ei(k) in practice. As stated in the Introduction, th
electrons and holes are reallyquasielectronsandquasiholes,
already renormalized by the presence of their surround
polarization clouds. Thus, we use accurate quasiparticle b
energies forEi(k) andEj (k) from GW calculations.2 These
energies compare very well with the results of direct a
inverse photoemission for materials that are not srongly c
related. Band energies are computed on a discrete meshk
points in the first Brillouin zone, and for a finite number
valence bandsj and conduction bandsi. LDA u functions
and band energies are computed efficiently using the b
set discussed in Ref. 7. When it is appropriate, LDA ba
energies are updated to include self-energy effects as
cussed below.

2. Direct term Hdir

Hdir is an attraction between the electron and hole a
involves the screened Coulomb interactionW. Although the
exact form ofW is impossible to compute, we know that a
approximate statically screened interaction should satisfy
following short-range and long-range limits:

W~x→y;R50!→
e2

ux2yu
,

W~x,y;R→`!→
e2

eux2y1Ru
,

wheree is the IR dielectric constant.8 In addition, the way in
which the two limits are connected should depend on
background electron density.

These requirements are satisfied by the static rand
phase approximation~RPA!, although we use an approxima
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tion to RPA in this work: the Hybertsen-Levine-Lou
model.9,10 This model has two parts. First, a functio
Whom(r ;r,e) is defined that represents the statically scree
Coulomb interaction between charges separated byr in a
fictitious system withhomogeneousdensityr, and IR dielec-
tric constante. Whom is constructed to give the RPA resu
for the electron gas whene5`, and is required to satisfy
known sum rules whene,`. An analytic form forWhom in
reciprocal space@Whom(Q;r,e)# is available.9 Second, an
approximate form for the screened interaction in aninhomo-
geneoussystem is written down as follows:10

W~r ,r 8!5 1
2 @Whom„ur2r 8u;r~r 8!,e…

1Whom„ur 82r u;r~r !,e…#, ~11!

wherer(r ) is the position-dependent charge density in
material. If r and r 8 are both in regions of similar density
and if the region betweenr and r 8 is at that density, then
W(r ,r 8) should be very close to the RPA result. More im
portantly,W(r ,r 8) satisfies the above short- and long-ran
limits, irrespective of density.

In order to implement Eq.~11!, Whom(r ;r,e) is computed
from Whom(Q;r,e) for a range of densities~and for the IR
dielectric constant of the system of interest! by numerical
integration:

Whom~r ;r,e!5E d3Q

~2p!3
eiQ•rWhom~Q;r,e!

5
2

pS 1

r D E
0

`

dQeLL
21~Q;r,e!Fsin~Qr !

Q G ,
~12!

where eLL(Q;r,e) is the Levine-Louie dielectric function
appearing in analytic form in Ref. 9. The ground-state el
tronic charge density determined from the LDA is used
r(r ). By using a discrete mesh of vectorsx andy in the unit
cell, and a mesh of lattice vectorsR, we can representW in
the (x,y;R) basis:

W~x,y;R!5 1
2 @Whom„ux2y1Ru;r~y!,e…

1Whom„uy2x2Ru;r~x!,e…#. ~13!

Hdir is diagonal in this basis, so we have

Hdirux,y;R&5W~x,y;R!ux,y;R&. ~14!

Because one hasWhom(r ;r,e)→e2/r for r→0, W(x5y;R
50) diverges. We circumvent this problem by definin
W(x5y;R50) to be the average ofWhom over a sphere with
volume Vx ~the volume corresponding to one discretex
point!:

W~x5y;R50!5
1

Vx
2EVx

d3x1d3x2Whom„ux12x2u;r~x!,e….

~15!

This integral is tabulated numerically for a range of densit
r.
d

e

-
r

s

In practice, we are given the two-particle wave function
the (i , j ;k) basis, and it is necessary to transform it to t
(x,y;R) basis before Eq.~14! is applied. This transformation
is the one of Eq.~6!. After the action byHdir , the inverse of
Eq. ~6! is used to transform back to the (i , j ;k) basis. The
mesh ofR vectors is chosen to be compatible with the me
of k points, so fast Fourier transform~FFT! techniques can
be used in thek→R andR→k parts of the transformations
We obtain theui ,k anduj ,k functions@appearing in Eq.~6!#
from LDA calculations. In principle, we should use quasipa
ticle wave functions fromGW calculations, but because o
the computational difficulty of obtaining them for a large s
of k points, we choose not to do this. It has been shown~at
least for the few cases tested2! that LDA and GW wave
functions are quite similar, even when the correspond
band energies are quite different.

One subtle point must now be addressed: In order for
( i , j ;k)→(x,y;R) transformation to be unitary, the following
conditions must be satisfied:

(
x

ui ,k* ~x!ui 8,k~x!5d i ,i 8 ,

(
y

uj ,k* ~y!uj 8,k~y!5d j , j 8 ,

where we have usedk1q'k. For infinite, continuous sets o
x andy points, these orthogonality conditions are automa
cally satisfied. For discrete sets ofx andy points, however,
this is not the case. We enforce these conditions by view
ui ,k and uj ,k as complex vectors with componentsui ,k(x)
anduj ,k(y). A Gramm-Schmidt orthogonalization procedu
is then applied that enforces orthogonality. This is possi
as long as the number of ‘‘vectors’’ is less than the ‘‘dime
sion’’ @i.e., the number of bandsi ( j ) is less than the num
ber of real-space grid pointsx (y)]. Orthogonalization aids
the convergence of the calculation with respect to the nu
ber of x,y points. We do not enforce unitarity of th
(x,y;R)→( i , j ;k) transformation, becauseHdiruc& may con-
tain contributions from conduction bands not included in t
calculation.

3. Exchange term Hex

Hex is a repulsion between the electron and hole and
volves the bare Coulomb interactionV. Before discussing the
way in which this term is evaluated, the use of the ba
interaction must be justified. If an infinite number of on
electron bands is used in the calculation, then the work
Sham and Rice3 shows that it is correct to use the bare i
teraction in the exchange matrix elements. In practice, h
ever, we use a finite number of conduction bands, and fe
valence bands than there are electrons in the unit cell. T
the subspace on whichHeff acts is smaller than the full spac
of singly excited states. The correct interaction to use inHex
is therefore something likeV/eBG, whereeBG is the back-
ground dielectric constant resulting from all transitions n
explicitly included. Instead of calculatingeBG, we simply set
V/eBG5V, and converge the calculation with respect to t
number of bands. When our results become independen
the number of bands we include, we are sure that we
close to the limit,eBG→1.
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In order to act withHex on a state vector, we use the for
of V in reciprocal space:

V~G,G8;q!5
4p

V

e2

uq1Gu2
dG,G85V̂~G;q!dG,G8 ,

whereG andG8 are reciprocal lattice vectors, andV is the
unit cell volume. If we have

Hex(
i , j ,k

c~ i , j ;k!u i , j ;k&5 (
i , j ,k

j~ i , j ;k!u i , j ;k&,

then we have

j~ i , j ;k!

52 (
i 8, j 8,k8

c~ i 8, j 8;k8!(
G

Yk8
i 8, j 8~G!Y* k

i , j~G!V̂~G;q!,

~16!

where we have defined

Yk
i , j~G!5(

G8
ui ,k1q* ~G8!uj ,k~G2G8!.

Since Yk
i , j (G) approaches zero foruGu→` faster than

1/uGu2, andV̂(G,q) goes as 1/uGu2, Eq. ~16! converges with
very few G vectors.

Given a singly excited stateuS&5( i , j ,kc( i , j ;k)u i , j ;k&,
the action ofHeff5H1e1Hdir1Hex on uS& is computed term
by term.H1e is applied with Eq.~10!; Hdir is applied with Eq.
~14! together with the transformation~and corresponding in
verse transformation! of Eq. ~6!; Hex is applied with Eq.~16!.
The vast majority of the computation time is spent tra
forming from (i , j ;k)→(x,y;R) and back again, in the evalu
ation of HdiruS&. The number of operations required in th
time-consuming part is proportional toNvNcNx

2Nk , where
Nv andNc are the numbers of valence and conduction ban
andNx (5Ny) andNk (5NR) are the numbers ofx andk
points.

D. Calculation of e2„v…

The imaginary part of the frequency-dependent lon
wavelength dielectric function can be expressed in term
the ground state,u0&, the singly excited states~eigenstates of
Heff), u f &, and the component of the macroscopic curr
operator along the polarization direction,l̂•J:

e2~v!5
4p2

v2 (
f

z^ f ul̂•Ju0& z2d~v2Ef !

54p2(
f

S 1

Ef
2D z^ f ul̂•Ju0& z2d~v2Ef !. ~17!

Ef is the energy of stateu f & ~the energy of the ground state
set to zero!. Instead of working with this sum-over
eigenstates expression, we choose to eliminate the sum
f altogether by transforming Eq.~17! into a form that in-
volves the ground state only:
-

s,

-
of

t

ver

e2~v!524p

3ImF ^0ul̂•JHeff
21S 1

v2Heff1 ih DHeff
21l̂•Ju0&G ,

~18!

whereh is a positive infinitessimal. We have used the co
pleteness relation( f u f &^ f u51 which applies in the space i
which Heff acts. We are now free to evaluate this groun
state expectation value in any basis we choose. Becaus
have access to the one-electron band states, we choos
one-particle eigenstate basis:

e2~v!524pImF (
i , j ,k,i 8, j 8,k8

^0uP†u i , j ;k&^ i , j ;ku

3S 1

v2Heff1 ih D u i 8, j 8;k8&^ i 8, j 8;k8uPu0&G ,

~19!

whereP5Heff
21l̂•J is the polarization operator.11

We make the replacement̂0ul̂•JHeff
21u i , j ;k&5@Ei(k)

2Ej (k)#21^0ul̂•Ju i , j ;k&. H1e involves the quasiparticle
self-energy corrections for the electron and hole~see Sec.
II C 1!. As discussed by Levine and Allan,12 this self-energy
operator is nonlocal. If we use LDA single-particle wav
functions for u i , j ;k&, it is then necessary to make the r
placement J→@Ei(k)2Ej (k)2H1e

LDA(k)#21@Ei(k)2Ej (k)
2H1e(k)#J, where H1e(k) denotes ak•p Hamiltonian,
H1e(k)5e2 ik•rH1ee

ik•r.12 The statesu0& and u i , j ;k& repre-
sent Slater determinants of single-particle orbitals, so
have

^ i , j ;kuPu0&5F 1

Ei
LDA~k!2Ej

LDA~k!
G

3E d3ruj ,k* ~r !l̂•@¹k8H1e
LDA~k8!#uk85kui ,k~r !.

~20!

The k-space gradient is computed by finite differences. T
integral is then evaluated in reciprocal space, using the F
rier components of the LDAu functions.

Defining uP&5Pu0&5( i , j ,ku i , j ;k&^ i , j ;kuPu0&, Eq. ~19!
becomes

e2~v!524pImF K PUS 1

v2Heff1 ih D UPL G . ~21!

This can be evaluated iteratively using the Haydock rec
sion method.13 For the first iteration, we setu1&5uP&, and
computeHeffu1& using the results of the previous subsectio
The expectation value is defined to bea15^1uHeffu1&. We
next compute the vectorHeffu1&2a1u1&. This vector would
be zero ifu1& were an eigenvector ofHeff . The norm of this
difference vector is set equal tob15uHeffu1&2a1u1&u. The
normalized vector,b1

21(Heffu1&2a1u1&), is denotedu2&.
This completes the first iteration. In the second iteration,a2
and b2 are computed from a25^2uHeffu2&, and b2
5uHeffu2&2a2u2&2b1u1&u. The general form for thenth it-
eration is
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an5^nuHeffun&,

bn5uHeffun&2anun&2bn21un21&u,

un11&5bn
21~Heffun&2anun&2bn21un21&). ~22!

The expectation value of the Green function can now
written as a continued fraction,

^PuS 1

v2Heff1 ih D uP&

5
1

v1 ih2a12
b1

2

v1 ih2a22
b2

2

v1 ih2a3 . . .

. ~23!

The number of ‘‘levels’’ in this fraction is equal to the num
ber of iterations,Niter . The question of how to terminate th
calculation is an important one. Methods of varying soph
tication have been used; we use the least sophisticate
which (an ,bn)5(aNiter

,bNiter
) for all n.Niter . A simple ana-

lytic form for the termination can then be derived.14 Each
iteration computes variousv moments ofe2(v). For in-
stance, from Eq.~21! and the definitiona15^1uHeffu1&
5^PuHeffuP&, it can be shown that one has 4p2a1

5*0
1`dvve2(v).

The advantage of using an iterative technique is twofo
First, the Hamiltonian matrix never needs to be computed
any one basis, since all that is required is to compute t
Hamiltonian acting on a vector. This reduces computat
time, becauseHeffuc& involves a sum over one expansio
coefficient, while^fuHeffuc& involves the simultaneous sum
over two coefficients. Second, the number of iteratio
needed to computee2(v) depends mostly on the size of th
broadening parameterh and is roughly independent of th
dimension of the Hamiltonian. As long ash is greater than
the characteristic level spacing ofHeff , the iterative scheme
is more efficient than standard diagonalization. SinceNiter is
roughly independent of the dimension, the total number
operations is proportional to the number of operations
action ofHeff . From above, this isNvNcNx

2Nk. If there areN
atoms per unit cell, one hasNv ,Nc ,Nx}N, while one has
Nk→constant, so the calculation as a whole scales asN4.

This method of computing a spectrum within linear r
sponse is completely general; any operator could be use
place ofP in Eq. ~21!. It is even possible to compute the tot
density of excited states as follows:15 consider the operatorR
having the property

Ru0&5uR&5 (
i , j ,k

exp~f i , j ,k!u i , j ;k&, ~24!

wheref i , j ,k are random numbers between 0 and 2p. Thus,
R acts on the ground state to create anincoherent~but equal
probability! superposition of electron-hole pair excitations.
uR& is inserted in place ofuP& in Eq. ~21!, the resulting
spectrum is proportional to the total density of stat
D(v)5( fd(v2Ef).
e
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.
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E. Analysis of e2„v… by spectral decomposition

The main advantage of the iterative scheme is that it is
necessary to compute eigenstates and eigenenergies in
to determine the spectrum. However, this is also its ma
disadvantage. It is often desirable to know which single p
ticle transitions@( i , j ;k) pairs# contribute to a peak ine2(v).
It may also be of interest to know the spatial distribution
the electron and hole in this spectral region. Information
this sort is not easily accessed in a scheme in whiche2(v) is
determined directly. In this section, we show that it is po
sible to extract this information by using another iterati
technique. The computation time is comparable to that of
scheme discussed above, provided that one is interested
single narrow-energy window.

Consider the singly excited stateuF(v)& defined by

uF~v!&5
2Aph

v2Heff1 ih
Heff

21l̂•Ju0&5
2Aph

v2Heff1 ih
uP&.

~25!

It can be shown thate2(v) is just the square of the norm o
this state,̂ F(v)uF(v)&. If we know uF(v)& in the (i , j ;k)
basis, then we can write

e2~v!5^F~v!uF~v!&

5^F~v!uS (
i , j ,k

u i , j ;k&^ i , j ;ku!uF~v!&

5 (
i , j ,k

u^ i , j ;kuF~v!&u2. ~26!

Each term in the rightmost sum in Eq.~26! involves a par-
ticular (i , j ;k) configuration. Thus,e2(v) is decomposed
into individual interband transitions.

The stateuF(v)& can be computed by rewriting Eq.~25!
so thatuF(v)& is the solution to a linear system of equatio
of the formAx5b:

~v2Heff1 ih!uF~v!&52AphuP&. ~27!

Given uP&, uF(v)& is determined iteratively by first guess
ing a solution, and then modifying the guess by comput
(v2Heff1 ih)uFguess(v)& and comparing to 2AphuP&. As
before, the calculation only involves the action ofHeff on a
vector, rather than the computation ofHeff in some basis,
followed by inversion. The number of iterations needed d
pends onh, and the distribution of eigenvalues ofHeff in the
neighborhood ofv. Care must be taken when dealing with
non-Hermitian operator likev2Heff1 ih. The generalized
minimal residual method~GMRES! is suited to this task.16

Once uF(v)& is known in some basis, it can be tran
formed to any other, to allow for different decompositions
e2(v). For instance, Eq.~6! can be used to decompos
e2(v) into individual (x,y;R) contributions:

e2~v!5 (
x,y,R

z^x,y;RuF~v!& z2. ~28!

It should be kept in mind that in order to do a spectral d
composition of this type, an iterative computation must
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done foreachvalue ofv. It is usually best to computee2(v)
first, and then decide on specific spectral regions for whic
perform the decomposition.

In addition to being computationally useful,uF(v)& also
has an important physical interpretation. The interaction o
photon with the electrons in a solid can be viewed as occ
ing in two steps. First, the photon creates an electron-h
pair by polarizing the material locally. This results in th
electron-hole pair state,Pu0&5Heff

21l̂•Ju0&5uP&. Second,
the localized electron-hole pair decays~or rather, disperses!
into more delocalized stationary states~electron-hole pair
eigenstates, such as excitons!. This decay is governed by th
electron-hole propagator, (v2Heff1 ih)21. The resulting
pair state, (v2Heff1 ih)21uP&, is equal touF(v)& within a
constant of proportionality. Because we havee2(v)
5^F(v)uF(v)&, this pair state isdirectly relatedto what is
measured in optical absorption, reflection, and ellipsome
experiments. Thus, the physics of optical properties is tha
mutually localized electrons and holes spreading apart. N
that uF(v)& is not an energy eigenstate, and that no sin
electron-hole pair eigenstate is sufficient to capture all
features ofuF(v)&.

III. RESULTS AND DISCUSSION

A. GaN

GaN is a tetrahedrally-coordinated material with a dir
band gap between 3 eV and 4 eV. It comes in two variet
wurtzite ~hexagonal, four atoms per cell!, and zinc blende
~cubic, two atoms per cell!. The zinc-blende phase is cu
rently the more difficult to grow, and has not been studied
extensively as the wurtzite phase. Because of their b
gaps, both phases are being considered for use as opto
tronic devices in the blue/UV spectral range. Efforts to d
termine their intrinsic optical properties in this range inclu
reflectivity measurements17 and spectroscopic ellipsometr
performed with synchrotron radiation.18–20

Although these measurements have led to a better un
standing of the optical properties, both suffer from deficie
cies. Reflectivity must be coupled with a Kramers-Kron
transform to determinee1(v) or e2(v), and this introduces
ambiguity into the analysis. Spectroscopic ellipsometry
rectly determinese1(v) ande2(v), but the synchrotron light
is contaminated by second-order radiation in certain ene
regions.18,19Finally, sample quality is always an issue. It h
been suggested that surface roughness is responsible fo
creased intensity in reflectivity and ellipsomet
measurements.17,19

In this section, we present the results of our calculatio
of e2(v) for wurtzite and zinc-blende GaN in the spectr
range \v50 –20 eV. We show that the inclusion of th
electron-hole interaction shifts oscillator strength to low
frequencies, bringing the shape of the calculated spect
into better agreement with the experiments. However,
found in previous calculations,17,21 the overall magnitude o
e2(v) is too large when compared with experiment.

1. Wurtzite

Pseudopotential LDA calculations for the single-partic
wave functions, band energies, and ground-state charge
to
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sity are performed at the experimental lattice constanta
53.16 andc55.13 Å , and internal bond-length paramet
u50.377.22 In this and all other calculations presented in th
work, spin-orbit coupling is neglected. The conduction ban
are shifted up to move the band gap~direct, and atG) from
the LDA value~2.69 eV! to theGW value of 3.5 eV.23 LDA
valence and conduction bands are stretched by 12% and
to mimic theGW bandwidths. The IR dielectric constante
used in the screening model@Eq. ~12!# is taken to be 5.5.22 It
should be noted that, in the wurtzite structure, there are
different principle components of the static dielectric tens
~corresponding toE perpendicular to thec axis, andE par-
allel to thec axis!. The difference between the components
roughly 10%, so we take a directionally averaged value to
used in the screening model. Calculatio
of e2(v) are performed withNk5600 (1031036 mesh!,
Nx545 (33335 mesh!, Nv58, Nc58, andNiter5150.24

The broadening parameter,h, is chosen to be 0.2 eV. Th
e2(v) has two principle components:E perpendicular toc,
andE parallel toc. The polarization directions are specifie
by the direction ofl̂ in the transition-matrix elements of Eq
20.

Figure 2 shows the calculatede2(v) for E perpendicular
to c for wurtzite GaN. The solid line includes the electro
hole interaction, while the dashed line is the result of on
electron theory@obtained by neglectingHdir andHex in Eq.
~9!#. The net attraction of the electron-hole interaction mov
oscillator strength to lower frequencies. The one-electron
sults are very similar to those of previous workers.17,21 Our
results including the electron-hole interaction look very sim
lar to e2(v) deduced from a Kramers-Kronig transform
reflectivity data.17 Figure 3 shows our results plotted togeth
with the reflectivity data. Peak positions and relative pe
heights are reproduced well,25 but the average magnitude o
our calculatede2(v) is ;502100 % too high compared to
experiment. This is also true when comparing to the spec
scopic ellipsometry experiments of Logothetidiset al.18 and
Wethkampet al.19 Following the reasoning in Lambrechtet
al.,17 we suspect that this may be an experimental artifa
The GaN films may have appreciable surface roughn
which scatters light, resulting in decreased intensity in refl
tivity and ellipsometry measurements. In Wethkampet al., it
is explicitly demonstrated that increased surface roughn

FIG. 2. Calculatede2(v) for E perpendicular toc for wurtzite
GaN. The solid line includes the electron-hole interaction, while
dashed line is the result of one-electron theory.
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gives rise to a decreased magnitude for the meas
e2(v).19 We stress that our previous calculations ofe2(v)
including the electron-hole interaction for diamond, Si, G
and GaAs~Ref. 5! gave results in excellent agreement w
experiments, both for peak positions and average p
heights.

Figure 4 showse2(v) for E parallel to c for wurtzite
GaN. The solid line includes the electron-hole interacti
and the dashed is one-electron theory. The major absorp
feature is a large peak at 6.9 eV. This is to be compared w
the three distinct peaks of lower intensity between 6 eV a
10 eV in theE'c case. Similar polarization-dependent spe
tral features have been observed in other wurtzite struc
semiconductors, such as CdS and CdSe.26 To the best of our
knowledge, the UV optical properties of wurtzite GaN wi
Euuc have yet to be measured.

2. Zinc blende

We perform calculations at the experimental lattice co
stant a54.50 Å .22 Conduction bands are shifted up
move the band gap~direct, and atG) from the LDA value
~2.1 eV! to the GW result of 3.1 eV.23 The LDA andGW
bandwidths are quite close, so we choose not to stretch

FIG. 3. Calculatede2(v) for E perpendicular toc for wurtzite
GaN including the electron-hole interaction~solid line!, and mea-
surede2(v) from Ref. 17.

FIG. 4. Calculatede2(v) for E parallel toc for wurtzite GaN.
The solid line includes the electron-hole interaction, while t
dashed line is the result of one-electron theory.
ed
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duction or valence bands. The IR dielectric constant use
the screened interaction is taken to be 5.5.22 We useNk
5512 (83838 mesh!, Nx527 (33333 mesh!, Nv
54, Nc58, Niter5150, andh50.2 eV.24

Figure 5 shows the calculatede2(v) for zinc-blende GaN
including the electron-hole interaction~solid line!, and ne-
glecting it ~dashed line!. As for wurtzite GaN withEuuc, the
result of the interacting theory shows a large peak
'7 eV. Note that the electron-hole interaction shifts t
peak positions as well as the peak heights. Noninterac
peaks at 8.2 eV, 10.8 eV, and 12.6 eV are shifted to 6.8
10.2 eV, and 12.3 eV. The peak heights decrease with
creasing energy in both noninteracting and interacting
sults, but the decrease is more pronounced in the interac
case. The net effect of the interaction is to shift oscilla
strength to lower energies, as for wurtzite GaN. Thee2(v)
for zinc-blende GaN has been measured by spectrosc
ellipsometry.20 These authors obtain three distinct peaks a
eV, 10.6 eV, and 13 eV, with the 13-eV peak being lower
intensity than the first two. Although the electron-hole inte
action moves the lowest-energy peak into better agreem
with experiment, the other two peak positions seem to be
worse agreement. As for wurtzite GaN, the overall mag
tude of the calculatede2(v) is larger than that of the experi
mental results.

With the electron-hole interaction having such an app
ciable effect, it is natural to ask: What gives rise to such
large shift in oscillator strength? From Eq.~17!, we see that
two factors determine the spectral features: the excita
energiesEf and the transition-matrix elements^ f ul̂•Ju0&.
Using the discussion surrounding Eq.~24!, we can calculate
the total density of excited states,D(v)5( fd(v2Ef), with
and without the electron-hole interaction. Figure 6 shows
results for zinc-blende GaN. Interacting and noninteract
D(v) are almost identical.27 Thus, the excitation energie
are essentially unchanged. This is reasonable, for the sca
the electron-hole interaction is set by the exciton bind
energy in the material. For GaN, this is on the order of te
of meV,28 which is small on the scale of many eV. Th
difference between interacting and noninteractinge2(v) is
therefore due to the transition-matrix elements. Although
electron-hole interaction does not change the electron-h
pair energy by much, the pair wave function is chang

FIG. 5. Calculatede2(v) for zinc-blende GaN. The solid line
includes the electron-hole interaction, while the dashed line is
result of one-electron theory.
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enough to affect these matrix elements a great deal. T
subtle but important effect is responsible for much of t
discrepancy between one-electron theories of optical pro
ties of semiconductors and experiments.3–6 More will be said
about the origin of this effect~as pertaining to insulators! in
the next subsection.

To get insight into the origins of peaks ine2(v), we
can use the results of Sec. II E to decomposee2(v) into
individual interband transitions. We focus on the first ma
peak in zinc-blende GaN. ChoosingNk5512 (83838
mesh!, Nx527 (33333 mesh!, Nv54, Nc58, and h
50.2 eV, uF(\v56.7 eV)& is computed. By analyzing its
components in the (i , j ;k) basis, we find thate2(\v
56.7 eV) is composed primarily of transitions betwe
bands 3,4~admixture of Ga 4p and N 2p!→ band 5~admix-
ture of Ga 4s and N 2s!. Since excitation energies are almo
unchanged by the electron-hole interaction, this conclus
could have been reached by decomposing the nonintera
e2(v).17 However, valuable insight into the effects of th
interaction can be obtained. Figure 7 showsz^ i , j ;kuF(\v
56.7 eV)& z2 plotted against thenoninteractingexcitation
energy,Ei(k)2Ej (k), for noninteracting~dashed! and inter-
acting~solid! cases. Each ordinate in the plots represents
square of a particular (i , j ;k) component ofuF(v)&, i.e., a
term in the sum of Eq.~26!. The nonzero width of the dis
tribution for the noninteracting case is due to the nonzeroh.
Note that for the interacting case, weight is shifted to hig
noninteractingenergy. Thus, states of higher noninteracti
energy are used to create states that take better advanta
the attractive electron-hole interaction. This is perfectly r
sonable, for the noninteracting energy plays the role of
kinetic energy of the electron-hole pair in the effective-ma
approximation. Because kinetic energy must increase in
der for the pair wave function to localize, the presence of
interaction leads to an increase in this noninteracting exc
tion energy.

B. CaF2

CaF2 is a highly ionic material that crystallizes in a cub
structure with one Ca and two F atoms per cell~called the
calcium fluoride structure!. Because of its ionicity, the ban
gap is large@'11.8 eV ~Ref. 29!# so its optical absorption

FIG. 6. Total density of~singly! excited states for zinc-blend
GaN. The solid line includes the electron-hole interaction, while
dashed line is the result of one-electron theory.
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edge is well in the UV. CaF2 occurs naturally, so measure
ments of optical properties have been available for deca
One of the earliest studies of the UV optical properties is
reflectivity measurement of R. Tousey30 using the technique
of photographic photometry. This work, together with lat
studies,31 reveals the presence of an exciton at 11.2 eV. M
recent work of Barthet al.32 uses spectroscopic ellipsomet
with light from a synchrotron source to measuree1(v) and
e2(v) directly. The exciton is not clearly resolved in the
work, because the peak is in an energy range that is cont
nated by second-order diffracted light. In this section,
present our calculatede2(v) for CaF2 including the electron-
hole interaction. Results are compared to those of the
experiments.

We perform calculations at the experimental lattice co
stanta55.46 Å .22 The LDA andGW values for the band
gap are 6.77 eV and 11.38 eV, respectively.33 Because the
GW gap is roughly 0.4 eV smaller than the gap inferred fro
experiment,29 we shift the LDA conduction bands up t
agree with the experimental minimum gap of 11.8 eV. T
is justified below when comparing our results to experime
LDA valence bands are stretched by 18%~conduction bands
are unstretched! to agree withGW bandwidths. The IR
dielectric constant used in the screened interaction is ta
to be 2.03.22 We use Nk5512 (83838 mesh), Nx
564 (43434 mesh), Nv58, Nc58, Niter5150, andh
50.3 eV.24

Figure 8 shows the calculatede2(v) for CaF2 including
the electron-hole interaction~solid line!, and neglecting it
~dashed line!. The difference between interacting and non
teracting results is far more pronounced than for GaN. T
is because the electron-hole interaction is much stronge
insulating systems~due to less screening!. An important
manifestation of the strength of the interaction is the peak
11.1 eV. This is an exciton peak. The large height of t
peak results from the large transition-matrix element t
couples the photon to a localized electronic excitation. Si
the band gap is 11.8 eV, the calculated exciton binding
ergy is 11.8–11.1 eV50.7 eV. Figure 9 shows our result
including the interaction~solid line!, together withe2(v)
deduced from the reflectivity measurement ofR Tousey.30

e
FIG. 7. z^ i , j ;kuF(\v56.7 eV!& z2 vs Ei(k)2Ej (k) for zinc-

blende GaN for noninteracting~dashed! and interacting~solid!
cases. Eachz^ i , j ;kuF(\v56.7 eV)& z2 has been broadened by
Lorentzian with a full width at half-maximum of 0.2 eV so that
smooth curve is obtained.
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The agreement is good overall, despite the fact that there
very few experimental points. One notable discrepancy is
amount of oscillator strength in the exciton peak. The a
under the peak is larger in the experiment than it is in
theoretical results. This has been observed before for LiF5 It
should be noted that our model for the screened electron-
interaction is expected to break down somewhat for sm
electron-hole separations in inhomogeneous systems.
exciton in CaF2 has charge-transfer character, so the aver
electron-hole separation should be on the order of a
bond lengths. We suspect that using the full RPA screen
should lead to better agreement. The calculated exciton p
position, 11.1 eV, is very close to the observed peak posi
of 11.2 eV.30,31 We stress that this close correspondence
tween theory and experiment is facilitated by the use of
experimentally determined band gap. If ourGW gap is used,
the exciton peak position is 10.7 eV, 0.5 eV lower than
experimental result. Figure 10 shows our calculated res
~solid line! together with the spectroscopic ellipsometry da
of Barth et al.32 Theory and experiment do not agree w
below ;14 eV, but seem to agree at higher energies. N
that the one-electron results shown in Fig. 8 do not e
agree qualitatively with either experiment.

Because the electron-hole interaction in CaF2 is large
enough to lead to a substantial exciton peak, the spatial

FIG. 8. Calculatede2(v) for CaF2 . The solid line includes the
electron-hole interaction, while the dashed line is the result of o
electron theory.

FIG. 9. Calculatede2(v) for CaF2 including the electron-hole
interaction~solid line!, and measurede2(v) from Ref. 30.
re
e
a
e

le
ll
he
e

w
g
ak
n
-
e

e
lts

te
n

is-

tribution of the electron and hole in this spectral region is
interest. UsingNk5512 (83838 mesh), Nx564 (434
34 mesh), Nv58, Nc58, and h50.3 eV, uF(v)& is
calculated in the (i , j ;k) basis. Eq.~6! is then used to trans
form uF(v)& into the ~x,y;R! basis, from which we deter
mine an average electron-hole separation:

d~v!5^F~v!uux2y1RuuF~v!&.

We find thatd(\v511.1 eV)54.0 Å. This is significantly
larger than the Ca-F nearest-neighbor distance of 2.4 Å,
is very close to the Ca-Ca nearest-neighbor distance
3.9 Å. However, it is still somewhat smaller than a typic
electron-hole separation for an excitation in the continuu
we find d(\v513.0 eV)54.7 Å.34 It should be kept in
mind thatuF(v)& is not an electron-hole pair eigenstate, b
is a pair state created by the perturbing radiation field. Eig
states with energies in the continuum are expected to be
delocalized. Another point of interest is that while continuu
eigenstates are relatively unaffected by the electron-hole
teraction, continuumuF(v)& pair states are very affecte
@the noninteracting electron-hole separation,d0(\v
513.0 eV), equals 7.7 Å as compared to 4.7 Å f
d(\v513.0 eV)].34 This is to be expected, becaus
e2(v)5^F(v)uF(v)& is strongly affected by the interactio
at all v. Finally, we note that the magnitude ofd(v) for all
v is largely governed by the localized nature of the stateuP&
@see Eq.~25!#. We find that̂ Puux2y1RuuP&52.75 Å, only
slightly greater than the Ca-F nearest-neighbor distance.

IV. CONCLUSIONS

We have presented a computationally efficient scheme
calculatinge2(v) for crystalline semiconductors and insul
tors, which includes the electron-hole interaction. The e
ciency results from an iterative method of computing t
spectrum, which does not require the calculation of energ
or wave functions. Each iteration involves an action of t
effective Hamiltonian~including the electron-hole interac
tion! on an electron-hole pair state. Actions are simplified
representing these states in bases that diagonalize diffe
terms in the Hamiltonian.

The scheme has been applied to the wide-gap semi
ductor GaN~both wurtzite and zinc blende!, and the ionic

e-
FIG. 10. Calculatede2(v) for CaF2 including the electron-hole

interaction~solid line!, and measurede2(v) from Ref. 32.
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insulator CaF2 . In both cases, the inclusion of the electro
hole interaction greatly improves the agreement betw
theory and the available experiments. By focusing on
discrepancies, we are led to suggest that optical experim
on GaN may be strongly affected by surface roughn
and/or noncrystallinity. Also, we suspect that the Hyberts
Levine-Louie model for screening the electron-hole inter
tion suffers from inaccuracies when applied to very insu
ing materials. Finally, our results support the experimenta
inferred band gap of 11.8 eV for CaF2 .

Note added in proof: We are now aware of more rece
ellipsometry measurements on GaN~wurtzite and zinc
nd
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blende! which show a larger overall magnitude for the d
electric function, closer to our theoretical results~see Ref.
35!.
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