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1 Introduction

There has been a resurgence of interest in the response of building structures to fires over the past several years. This interest
was greatly enhanced by the attack on, and subsequent collapse of, the World Trade Center (WTC) towers. Traditional methods
of modeling this behavior are based on computing the thermal response of an un-deformed structure and performing structural
analysis in a sequential manner [1]. This procedure can lead to significant errors in the thermally induced structural response.
While the applications of interest clearly involve highly non-linear calculations, the starting point for most fire scenarios is
almost always an undamaged building at room temperature. Since virtually all buildings are designed to keep the stresses well
below the elastic limit and the deflections of the load bearing structure reasonably small, the starting point for simulations of fire
induced damagemustlie within the domain oflinear elasticity. Moreover, the difficulties that arise are evident before the tem-
perature rise is large enough to affect the elastic or thermal properties of most structural materials. Under these circumstances
the thermally induced stresses are also linear, and the temperature fields can be described by the heat conduction equation for
the material(s) of interest.

The facts described above justify an analysis of the coupling between the temperature and thermally induced stresses based on
the linear thermo-elastic equations. The temporal dependence of the stresses is the focus of this analysis. A popular technique
for solving the thermo-elastic equations is to first compute (or assume) the time dependent temperature distribution in the load
bearing structure. Then, given this information, the temperature distributions are “frozen” at a succession of discretely chosen
times and an equilibrium solution is sought for the state of stress at each chosen time. The fact that the temperature is changing
continuously and that this continuous changemustaffect the stresses is ignored in this approach. This technique is justified by
noting that the elastic wave propagation speed is so fast compared with the time scales of interest in thermo-elastic phenomena
induced by fires that a quasi-steady analysis is justified.

The analyses that follow are intended to show that computational techniques that “freeze” the temperature at a given time
and compute an equilibrium stress distribution may not be consistent with the dynamical equations of thermo-elasticity, even
if the elastic wave propagation speed is taken to be infinite. The next section demonstrates how the general solutions to the
equations of thermo-elasticity couple the the time scale for the evolution of the displacements to that of the temperature field.
In particular, it is shown that the solutions for the displacements cannot obey an equilibrium equation unless the temperature
field is independent of time. Following this, formal solutions for a half-space loaded thermally are derived. Again, it is clear
that part of the solution for the stresses and displacements are inherently time dependent.

2 The Thermo-Elastic Equations

The starting point for the analysis are the linear themo-elastic equations which relate the displacementsui and stressesτij to
each other and to the temperatureT in the elastic medium. They can be written in the form [2]:

ρ
∂2ui

∂t2
= Fi +

∂τij

∂xj
(1)

τij = λ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− α (3λ + 2µ) (T − To) δij (2)

Here,ρ is the density of the material,Fi is the body force per unit volume,µ andλ the Laḿe constants,α the coefficient of
thermal expansion, andT the temperature. The temperatureTo is the reference temperature of the material in its unstressed state
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before the fire. That temperature is taken to be uniform here, which is a reasonable simplification given the temperature rise
associated with a building fire. These equations are supplemented by suitable boundary conditions that express the connections
to other portions of the structure and external loads. The temperature field evolves according to the heat conduction equation.

ρCp
∂ (T − To)

∂t
= k

∂2 (T − To)
∂x2

k

(3)

The coupling between the stresses and the temperature field comes from the effect of the temperature gradients on the volumetric
expansionφ. The body force plays no role in this and will henceforth be ignored. Taking the divergence of the thermo-elastic
evolution equation (1) yields:

φ ≡ ∂uk

∂xk
(4)

ρ
∂2φ

∂t2
= (λ + 2µ)∇2φ− α (3λ + 2µ)∇2 (T − To) (5)

The next step is to simplify these equations by eliminating the fast wave motion associated with the irrotational waves. It is easy
to see from equation (5) that these waves propagate with a speedc2 = (λ + 2µ)/ρ. For typical steels,c ∼ O(103) m/s. More-
over, the thermal diffusivityk/(ρCp) ∼ O(10−5) m2/s. We now introduce dimensionless thermal and mechanics variables
respectively as follows:

T − To = (qoL/k) Θ (yi , τ) xi = Lyi t = to τ L =

√
k to
ρ Cp

(6)

φ = βΦ (yi, τ) ui = βLvi β = α qo

√
to

k ρCp

(
3λ + 2µ

λ + 2µ

)
ε2 =

k

Cpto

1
(λ + 2µ)

(7)

The non-dimensional variables are chosen so that the full time dependent heat conduction equation is retained, and the temper-
ature rise is related to a heat flux to a bounding surfaceqo. The coupling parameterβ scales the thermally induced deformations
to the temperature rise, andε is the ratio of the speed of a thermal “front” to the irrotational wave speed in the elastic medium.
The time scaleto is arbitrary, and its choice sets both the diffusion controlled length scale and the magnitude ofε. Given the
approximate values of wave speed and thermal diffusivity shown above, it is clear thatε � 1 for any time scale of interest in a
fire scenario.

The dimensionless evolution equations for the normalized dilationΦ and temperature riseΘ take the following form:

∂Θ
∂τ

= ∇2Θ (8)

ε2
∂2Φ
∂τ2

= ∇2Φ−∇2Θ (9)

Φ = ∇ · ~v (10)

It is now easy to show the structure of the solution for the irrotational portion of the deformation. Ignoring terms of orderε2, it
is clear thatΦ musthave the form:

Φ = Θ + Φ∗ ∇2Φ∗ = 0 (11)

This clearly shows that the dilation has two parts; a harmonic contributionΦ∗ that can be regarded as a local equilibrium solution
corresponding to the instantaneous boundary conditions, and a part that is directly proportional to the local temperature rise.
This part of the solutionneveris in equilibrium, unless the temperature is in steady state.

This result can be seen even more clearly by noting that since the dimensionless displacement is a vector field, it can always be
decomposed into an irrotational and a solenoidal part.

~v = ∇Ψ +∇× ~A (12)

Then, since∇ · ~v = Φ = ∇2Ψ, the scalar potential functionΨ satisfies the equation:

∇2Ψ = Θ + Φ∗ (13)



The harmonic functionΦ∗ can be eliminated to obtain an explicit relation between the irrotational component of the displace-
ment and the temperature field in the following form:

∇2∇2Ψ =
∂Θ
∂τ

(14)

Here, the fact thatΘ satisfies the heat conduction equation has been used. Alternatively, the solution forΨ can be decomposed
into an evolution equation and an equilibrium equation as follows:

Ψ = Ψ∗ + Ψ1 (15)

∇2∇2Ψ∗ = 0
(

∂

∂τ
−∇2

)
∇2Ψ1 = 0 (16)

Both equation (14) and (16) show that only part of the solution for the thermally induced displacement can correspond to a local
equilibrium state if the temperature varies with time. Any solution procedure that works by “freezing” the temperature in time
and using an equilibrium equation to satisfy the boundary conditionsmustmiss at least part of the solution to the equations of
thermo-elasticity.

3 Heated Elastic Half-space

In order to make some of these ideas more precise, consider the idealized problem of an elastic half-space heated at the surface
by a prescribed heat flux that in general depends on space and time. The variables are made dimensionless as before, with the
coordinate normal to the surface pointinginto the solid denoted byz, and the coordinates parallel to the surface denoted by
~r ≡ (x, y). Thedimensionalheat flux to the surface atz = 0 is given byqz = qo Q (x, y, τ). Furthermore, body forces are
ignored and there are no mechanical forces acting on the surfacez = 0. Thus, the only reason any stresses and deformations
are set up in the solid is because of the thermal loading.

Under these circumstances, the boundary conditions at the surface become:

τz i = 0, i ≡ x, y, z
∂Θ
∂z

= −Q (x, y, τ) (17)

The stress free boundary conditions can be conveniently rewritten in terms of displacements by introducing the parallel dis-
placement vector~V ≡ (u, v), the perpendicular displacementw, and the parallel gradient operator∇h defined by:

∇h ≡
(

∂

∂x
,

∂

∂y

)
(18)

The requirement that the two shear components of the stress vanish at the surface can then be written in the form:

∇hw +
∂

∂z
~V = 0 @z = 0 (19)

Similarly, the normal stress will vanish at the surface provided that:

λΦ + 2µ
∂w

∂z
= (λ + 2µ) Θ @z = 0 (20)

In the present notation,Φ can be written in the form:

Φ = ∇h · ~V +
∂w

∂z
= Θ + Φ∗ (21)

The heat flux is assumed to be applied to the surface over a finite area. Thus, the temperature rise together with all displacements
must vanish asz →∞ and~r →∞.

The equations that must be solved can now be rewritten as follows: The heat conduction equation takes the form:

∂Θ
∂τ

=
(
∇2

h +
∂2

∂z2

)
Θ (22)



Using the general results obtained in the previous section, the equilibrium equations for the parallel components of the dis-
placement become: (

∇2
h +

∂2

∂z2

)
~V +

(
µ + λ

µ

)
∇hΦ∗ = ∇hΘ (23)

The auxiliary functionΦ∗ defined in equation (11) satisfies the Laplace equation, written in the present notation as:(
∇2

h +
∂2

∂z2

)
Φ∗ = 0 (24)

The system of equations that must be solved thus consists of equation (22), which determinesΘ, equation (23), which deter-
mines~V , equation (24), which determinesΦ∗, and equation (21), which determinesw.

The solutions can be obtained using transform methods. Let the Fourier-Laplace transform of an arbitrary functionf (~r, z, τ)
be defined as follows:

f̄
(
~k, z, p

)
=
∫ ∞

−∞
d2~r

∫ ∞

0

dτ exp
(
−i~k · ~r − pτ

)
f (~r, z, τ) (25)

The Fourier-Laplace transform of the solutions satisfying boundary conditions at infinity can then readily be found to be:

Θ̄ = Q̄
(
~k, p

) exp
(
−
√

p + k2 z
)

√
p + k2

(26)

Φ∗ = Ā
(
~k, p

)
exp (−k z) (27)

~V = i~k Ψ̄
(
~k, p

)
(28)

Ψ̄ = Q̄
exp

(
−
√

p + k2 z
)

p
√

p + k2
+ B̄

(
~k, p

)
exp (−k z) +

(
µ + λ

µ

)
Ā
(
~k, p

) z

2k
exp (−k z) (29)

w̄ = − Q̄

p
exp

(
−
√

p + k2 z
)
− kB̄ exp (−k z)−

(
3µ + λ + (µ + λ) k z

2 k µ

)
Ā exp (−k z) (30)

The unknown functions̄A
(
~k, p

)
andB̄

(
~k, p

)
are determined by the surface boundary conditions given in equations (19) and

(20). The results are:

Ā =
(

µ

µ + λ

)
2k Q̄

p

(
1− k√

p + k2

)
(31)

B̄ =
Q̄

(µ + λ) p

(
µ√

p + k2
− 2µ + λ

k

)
(32)

Since the primary interest in this solution is the extent to which the time dependence is imbedded in the result, attention is
focused on the vertical displacement at the surface. This part of the solution can be readily obtained and interpreted in the
light of the general formulation discussed in the previous section. Physically, it represents the “bulge” in the surface that would
appear in the vicinity of the heated area. The recipe for the bulge can be readily compared with that for the temperature rise at
the surface induced by the heat transfer. Since it is well known that the temperature distributionmustbe treated as a transient
phenomenon, the similarities and contrasts between these two results will lend insight into the importance of a coupled transient
analysis of the stresses and displacements induced by the heat transfer.

First consider the surface temperature distribution. Using the convolution theorem, the solution can be written in the form:

Θ(~r, τ, 0) =
∫ τ

0

dτo

∫ ∞

−∞
d2~ro Q (~ro, τo) G (~r − ~ro, τ − τo) (33)

G (~r, τ) =
1

4 (πτ)3/2
exp

(
−η2/4

)
η = r/

√
τ (34)



In order to simplify the analysis, consider the special case whereQ (~r, τ) is concentrated at a point~r = ~R(τ) with a strength
QT (τ). While this isnot a realistic representation of the spatial distribution of the heat flux induced by an individual fire to a
large floor area, it does pick up two key features of such a fire. First, the overall strength of the fire (measured by its overall heat
release rate) will change with time. Second, the fire will migrate from place to place as its fuel is consumed and the availability
of oxygen changes with time. Under these circumstances the surface temperature distribution simplifies to:

Θ(~r, τ, 0) =
∫ τ

0

dτo
QT (τo)

4 (π (τ − τo))
3/2

exp
(
−η2

T /4
)

ηT =
∣∣∣~r − ~R (τo)

∣∣∣ /√(τ − τo) (35)

The most relevant parts of this result in the present context are the dependence of the solution on the previous history of the
surface heat flux distribution, and the fact that the Greens functionG has a structure determined primarily by the similarity
variableηT which itself is inherently time dependent. Note that the singularity in the integrand at~r = ~R (τo) , τ = τo is an
artifact of injecting a finite heat flux into a point. The results make perfectly good sense for points away from the current
location of the heat flux source.

The solution for the displacement normal to the surface can be found in an analogous manner. However, since the inversion
process is somewhat more complex here a few details are provided. The Fourier-Laplace transform of the surface displacement
takes the form:

w̄
(
~k, p, 0

)
=
(

2µ + λ

µ + λ

)
Q̄

p

(
k√

p + k2
− 1

)
(36)

The solution forw (~r, τ, 0) takes the same form as equation (33) except that the Greens functionG (~r, τ) is replaced by a new
kernel functionK (~r, τ) defined as:

K =
(

2µ + λ

µ + λ

)
1

(2π)2

∫ ∞

−∞
d2~k exp

(
i~k · ~r

) 1
2πi

∮
dp exp (pτ)

1
p

(
k√

p + k2
− 1

)
(37)

Carrying out the inversion of the Laplace transform first, and noting that the resulting expression depends only onk ≡ |~k|, the
Fourier inversion integral can be reduced to:

K = −
(

2µ + λ

µ + λ

)
1

2πτ

∫ ∞

0

dξ ξ erfc(ξ) J0 (ξ η) η = r/
√

τ (38)

Here,J0 denotes the Bessel function of the first kind of order zero. The final integral can be evaluated with the aid ofMathe-
maticato yield:

K = −
(

2µ + λ

µ + λ

)
1

8πτ
exp

(
−η2/8

) (
Io

(
η2/8

)
− I1

(
η2/8

))
(39)

The quantitiesI0 andI1 are the modified Bessel functions of the first kind of order zero and one respectively. The minus sign
in front of the (positive) expression forK arises from the definition of positivew pointing into the material. Thus, the thermal
expansion induces a bulge out of the plane of the surface, so thatw must be negative. Finally, if the heat flux to the surface is
concentrated at a point as described above, the solution for the normal surface displacement becomes:

w =
∫ τ

0

dτo QT (τo) K (τ − τo, ηT ) ηT =
∣∣∣~r − ~R (τo)

∣∣∣ /√(τ − τo) (40)

4 Discussion

Clearly, the only significant differences between the solutions forΘ andw at the surface are in the mathematical structure of
the kernel functionsG andK. They are plotted in figure 1 in normalized form, so that the value atη = 0 for each function is
one. The thermal functionG has an exponential decay, consistent with the inherently transient diffusion of heat from the point
source at the surface. The normal displacement kernelK however, decays algebraically with largeη with K ∼ η−3. This is a
consequence of the fact that the displacements have both equilibrium and transient components. On the other hand, the spatial
dependence of both functions appears in the inherently transient independent variableη = r/

√
τ , which describes a diffusion

controlled process. Moreover, the full solutions for both the temperature and the displacement are dependent on the previous
history of each quantity.
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Figure 1:Kernel functions normalized by their value at η = 0. The quantities actually plotted areG(η, τ)/G(0, τ) and
K(η, τ)/K(0, τ). The Gaussian functionG decays more rapidly thanK which decays∼ η−3.

How can such a close similarity in the solutions that emerge from the above analysis be reconciled with the approach typically
employed in the analysis of structures immersed in fires? Given a simulation of the fire dynamics, an elaborate procedure that
couples the temperature and radiation fields in the gas to the temperature distribution in the load bearing structure can be devised
[1]. The procedure involves, among other things, using commercial software packages (e.g. ANSYS) to calculate the transient
temperature distribution through realistic representations of the structure and any relevant insulation. When this process is
completed, a small set of times are chosen, and the spatial distribution of temperature at each of these times is interpolated
into the finite element representation to be used for the structural analysis. This representation is invariably different from
that employed for the thermal analysis. This process inevitablymustintroduce errors. Each temperature distribution is then
considered fixed in time, and the body forces induced by the thermal expansion are computed. The software is then used
to compute an equilibrium solution corresponding to the body forces, together with any external and gravity loads on the
structure. If such a solution is found, the problem is then repeated at the next chosen time, until either the time sequence has
been completed or no equilibrium solution is found. The absence of any need for a previous time history of the state of stress is
disturbing. The calculation of the state of stress at intermediate times prior to an estimated “collapse” is a purely mathematical
interpolation towards the final state. No knowledge of the state of stress at intermediate times is required in such a procedure.
Indeed, no information about either the thermal or stress states between specified time intervals is supplied. This does not seem
consistent with the equations of linear thermo-elasticity. It is probably not consistent with the non-linear equations that are
being solved either.
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