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Abstract 

The purpose of detecting fires early is to provide an alarm when there is an environment 

which is deemed to be a threat to people or a building.  High reliability detection is 

based on the supposition that it is possible to utilize a sufficient number of sensors to 

ascertain unequivocally that there is a growing threat either to people or to a building 

and provide an estimation of the seriousness of the threat. It has been shown to be 

possible to detect fires early and reliably using the analog signal of the current 

generation of fire detectors. The best combination for early detection has been shown to 

be the complement of ionization, photoelectric, carbon monoxide and temperature. This 

is “best” in the sense that it is possible, using current day sensors, to see characteristic 

signatures very early, as well as to deduce quantitative information beyond the normal 

tenability limits. This paper will demonstrate this with an example using a neural 

network trained with a model of fire growth and smoke spread. 

 

Introduction 

The purpose of detecting fires early is to provide an alarm consistent with an 

environment which is deemed to be a threat to people or a building. High reliability 

detection is based on the supposition that it is possible to utilize a sufficient number of 

sensors to ascertain unequivocally that there is a growing threat either to people or to a 

building and provide an estimation of the seriousness of the threat.  

 

The current generation of fire detection systems1 is designed to respond to smoke, heat, 

gaseous emission or electromagnetic radiation generated during smoldering and flaming 

combustion. Smoke is sensed either by light scattering or changes in conductive 

properties of the air, heat by thermistors, the electromagnetic spectrum by photodiodes 

and photovoltaic cells, and gas concentrations by chemical cells2. An important facet of 

the present work is utilization of sensors which are currently in use in fire detection 



 

 

systems, as well as those available from other systems, such as energy management and 

security. The information from the sensors themselves is analog data, measuring 

temperature, obscuration, species density, heat flux and other characteristics of the 

environment. What is needed is a means to provide earlier warning, and more useful 

information before and after alarm using these sensor suites. 

 

Curve Matching Algorithms 

Curve matching covers a wide range of mathematical techniques, from functional 

analysis to neural networks. Functional analysis is most useful when the signal to noise 

ratio is high3 and one can match the signal to a specific curve of interest, for example, 

relating a t2 signal to a heat release rate. Neural network analysis is useful when only 

the general shape of the curve is known and detail is not justified by the available 

signal. The regions 1, 2 and 3 in figure (1) show conceptually such a delineation. For all 

three regions, a pattern can be discerned. However, pattern matching is most usefully 

applied to the early, noisy signals in region 1 which does not lend themselves to definite 

statements of functional form, that is, when the signal-to-noise ratio is not high enough 

to provide a measure of the environment, typically S/N~2 to 4. Region 2  is the current 

range of available detection when point measurements provide sufficient signal to 

alarm, typically S/N~3 to 5. Region 3 is appropriate for signal extraction for fire 

following when the signal to noise ratio is typically greater than 10. We want to push 

detection capability into region 1, yet classify it correctly in terms of advice to the fire 

service or occupants. 

 

Classification of fire types into low, medium and high likelihood consequences has 

implications for both fire service as first responders, and building maintenance 

personnel who might be able to fix problems before they rise to emergency status. 

 

Figure (2) shows a typical sensor reading from a fire, carbon monoxide in this case. 

Detecting the presence of a fire traditionally has been to measure such signals, and 

provide an alarm when some condition is reached, for example, when the opacity is 

high or the carbon monoxide too high. Shown in the figure are alarm points for several 

detection strategies, an ionization detector, a photoelectric detector, and the CO*Ion 



 

 

algorithm discussed previously. The example is a surrogate for the range of signals 

which might be used for detection of fires,4. Currently, temperature (T), opacity (OD), 

ionization (Ion) and carbon monoxide (CO) are the core signals we will focus on. In 

addition to these, carbon dioxide (CO2), volatile organic hydrocarbons (VOC), nitrogen-

oxygen compounds (NO), oxygen(O2) and water concentration (RH) are possible future 

signals to incorporate. 

 

An example of using pattern matching is discussed in the paper by Rose-Phersson et al.5 

The focus of the paper was the use a probabilistic neural network to combine signals 

from several transducers to reduce the likelihood of both false positives and false 

negative responses from detector systems. While this is similar to what we will use to 

reduce the time delay, the focus was on more reliable detection. The goal behind their 

work was to automate response to fires (e.g. sprinkler activation), so very high 

reliability is even more important than early detection. They demonstrated the optimal 

sensor set to be ionization, photoelectric, carbon monoxide and carbon dioxide, with 

temperature providing the best confirmation signal. In our case, we will work from the 

premise that the patterns we see will result in an alarm condition from the installed 

alarm base, so we want to respond as early as possible to these signals or patterns, in 

order to reduce the response time of the firefighters.  

 

An Example of Implementation of a Neural Net Algorithm 

An artificial neural networks (ANN) is a collection of mathematical models that 

emulate some of the observed properties of biological nervous systems and draw on the 

analogies of adaptive biological learning. The key element of the ANN paradigm is the 

structure of the information processing system. It is composed of a large number of 

highly interconnected processing elements that are analogous to neurons and are tied 

together with weighted connections that are analogous to synapses. 

 

Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons. This is true of ANNs as well. Learning typically occurs by 

example through training, or exposure to a “truthed” set of input/output data where the 

training algorithm iteratively adjusts the connection weights (synapses). These 



 

 

connection weights store the knowledge necessary to solve specific problems. 

 

ANNs are good pattern recognition engines and robust classifiers, with the ability to 

generalize in making decisions about imprecise input data. They offer ideal solutions to 

a variety of classification problems such as speech, character and signal recognition 

where the physical processes are not understood or are highly complex. They are often 

good at solving problems that are too complex for conventional technologies (e.g., 

problems that do not have an algorithmic solution or for which an algorithmic solution 

is too complex to be found) and are often well suited to problems that people are good 

at solving, but for which traditional methods are not (you know a fire when you see it!). 

 

The study of fire occupies a unique niche in the world of science and engineering 

because an unwanted fire is considered a failure in the sense that it is not a desirable 

outcome and is to be avoided. Detection and suppression are thus posed as means to 

avoid failure, which can be well characterized. For detection in particular, we have well 

defined failures which can be tested fairly reproducibly. In this highly regulated 

environment, in order for detectors to be approved for use they must detect fires as 

defined in UL 268 and EN 54 tests. In addition, there are nuisance criteria when the 

detectors should not alarm. While these latter are well recognized (dust, for example), 

there are no formal tests, though a simple negative (no fire) should in no case produce 

an alarm (a false positive). For the UL tests, there is a time prior to when the alarms 

should not activate. 

 

The biggest difficulty in training neural networks is the extent of the training scenarios 

available. In fire research, the work has been limited to experimental data sets. 

Typically the training set consists of tens to hundreds of scenarios, while ANNs need 

tens of thousands to produce highly reliable classification. Using the fire model, 

CFAST, we can generate a very large set of training and testing scenarios. 

 

For this example, we consider the use of single head (multisensor) detector in a single 

compartment. The sensor suite consisted of four sensors: oxygen, carbon monoxide, 

opacity and temperature. A more complete characterization would consider each sensor 



 

 

separately, as well as all combinations. This would provide a sense of the effect of 

losing a sensor (fault detection). 

 

We have a model for fires which has been extensively tested, CFAST6. We used this 

model to generate training and testing scenarios which cover a very fine delineation of 

the event to be detected.  Using such a model allows us to generate the tens of 

thousands to hundreds of thousands of examples necessary to provide sufficient training 

for a network. 

 

The base case used: Standard atmosphere of 101,300 Pa,  A single compartment of 

13x13x2.4 m, Two cracks (one vertical, one horizontal) to account for leakage, One 

door of (0.9 x 2.3) m and One window of (0.9 x 1) m. 

 

Starting with this base case, variations of the base case scenario were generated based 

on 
(3) Ambient conditions: outside to inside temperature the same or ±15 BC 
(3) Wind: none, into door (away from window if present) or away from door  
(3) Fire size: (1, 10, 100) kw - note: no fire at all is a special case 
(3) Position of fire: floor, and 0.5 m, 1.0 m above the floor in the center of the room 
(4) Door width: open, ½, 1/4, 1/8 width 
(2) Window: open or closed (0.9 m x 2.3 m) 
(4) CO: (0.0, 0.001, 0.01 and 0.05) kg/kg or (0%, 0.1%, 1% and 5%) by fraction 
(3) Smoke yield (optical depth): (0, 0.01, 0.05) kg/kg or (0%, 1% and 5%) by fraction 
(2) Hydrogen carbon ratio in the fuel: (0, 0.2) kg/kg 
 

This is 20,768 variations, which were then used to train the neural network. The 

scenarios were 300 second calculations with a time slice every 30 seconds. While this 

suite is sufficient to demonstrate the feasibility of training multisensor networks, a 

somewhat more comprehensive set of scenarios might include variable room size, non-

rectilinear compartments and a range of radiative fraction, which would increase the 

number of scenarios, calculation and training time about an order of magnitude.  

 

Three training exercises were performed: 1) a subset of the parameter space comprising 

5000 scenarios, and 5000 for testing; 2) a complete set of scenarios (20726), and a small 

subset for testing (42) (total of 20768); and 3) preconditioning to supplement training 

for those cases when a fire is known to exist. 



 

 

 

In order to be considered fast, the detection scheme must be at least fast as current 

detection algorithms. For high reliability, we are looking for means of seeing all real 

fire (no false negatives), and not responding to those deemed to be nuisances (no false 

positives). A metric for the former will be discussed as part of the analysis of results. 

The metric for false positives (nuisance alarms in the present context) and false 

negatives (missing a real fire), the scenarios are either fires or nuisance signals. Except 

for the base case of no heat release, which by definition is not a fire, the remainder are 

classified as real or nuisance by whether they pose a threat at any point in the curve to 

people or property. The classification is based on the ISO Toxicity Specification7. For 

exercises 2 and 3, of the total scenario space, 15 916 cases were fires and 4 852 non-

fires. These latter (23%) are nuisance signals in the present context. A more complete 

classification scheme would further classify these according to Tables 1 through 3. 

 

Mathematically, a neural network is a set of weight matrices which multiply sensor 

signals, and  use a function (in our case a linear ramp) to combine the results. This 

provides a classification of data. Schematically, it is shown in figure (3), where p 

represents the measurement points, a vector of length R (in our case, this is the number 

of sensors), b a bias vector for the algorithm (always set to zero in our training), w the 

weight matrix (the answer so to speak). In the following training cases, we used R=4, 

but typically, it can range from 1 (a single sensor) to 9 (see ref. ) which would be a very 

general multi-criterion sensor head. 

 

The end point of such a system is a weight matrix which when multiplied by the sensor 

suite (p) produces a classification number; we used a simple classification of true or 

false (fire or non-fire). We trained a network with a  single hidden layer of 10 neurons, 

and a single output layer  using a linear transfer function. Thus we have only one matrix 

which needs to be adjusted. The training method used was Levenberg-Marquardt8. We 

have a set of four sensors, with 31 points (30 intervals). The data were presented to the 

learning algorithm, which modified the weight matrix (w) until a (defined) error level 

was reached. 

 



 

 

We applied this technique using the Matlab9 simulation tool, with the Neural Network 

Toolbox. Each data set was presented to network, and it adjusted the weight matrix. 

After completing the training, the network was presented test data, and classified the 

new sensor readings as a fire or non-fire event. Since we are concerned with a binary 

decision, the results were descritized to 0 or 1. In actuality, the data was a spectrum and 

additional training could be provided to further refine the classification scheme to non-

fire, nuisance or significant event. 

 

For the first case, there were no false positives or false negatives. That is, all fires were 

detected and no alarms when a fire did not exist. The time to alarm was generally the 

same for conventional detection and the trained network. The time to do the CFAST 

calculations was approximately 45 minutes, and the training time approximately 1 hour. 

 

The time/temperature curve shown in figure (4) has the alarm points overlaid. The solid 

lines are example 1 and the dashed lines example 2. The vertical ticks are the 

corresponding detection time for conventional detection (green) and the neural net with 

training (red). 

 

For the second example, all 20768 scenarios were used. In order to test the network, 42 

of the 20768 scenarios were used for testing and not used for training. This then 

constituted a sampling of data which the network should be able to recognize. Of the 

forty two tested, there were no false positives (nuisance alarms), that is no fire detected 

when a fire did not exist; however, there was one false negative, not showing an alarm 

when a fire was present.  This is about a 2% failure rate. The scenario which failed is 

marginal for the network, and to improve performance, the scenario suite needs to be 

extended to provide a finer resolution. In actual commercial detection systems, false 

negatives occur (3 to 20)% of the time10 and false positives (30 to 50)% of the time, so 

we have improved on the detection capability as well as reduced the time to detection. 

 

This training was done with a 10 neuron system. A systems with 20 neurons and two 

hidden layers was tried as well, without improvement. The time to detection for this 

second training example was always as early as conventional detection, as shown in 



 

 

figure (5). The time to do the CFAST calculations was approximately 2 hours, and the 

training time approximately 3 hours. The two cases shown, 007051 and 017658, are 

randomly picked from the 42 test cases. 

 

For the third training example, the truth vector (when the fire exists) was 

preconditioned for those cases we know a fire will exist. For example, for the 100 kW 

source, it will at some time be considered a fire. For these cases we can set the training 

vector to “true” at after the first interval. Once again, there were no false positives and a 

single false negative (same case as before). The time labeled “preconditioned” in figure 

(5) was the response for the two cases shown in the figure for the example 2 testing 

regimen, 007051 and 017658, thus showing the value of using additional information in 

the training regimen. 

 

This third training example takes advantage of the fire problem. We start with the 

scenarios. These produce curves of time, temperature, co, and so on. At some point we 

decide there is a fire. At the simplest level, used in 1 and 2, it is done the based on 

commercial detection schemes or the toxicity assessment discussed earlier. However, 

we can add to that information base, by noting that certain scenarios are going to be 

classified as fires, and tell the system from the beginning. For example, a 100 kW fire 

will must be detected, as must a 5 % CO condition. So for certain scenarios, one tell the 

system that it is a fire after the first interval. That gets factored into the weight matrix so 

that curves of similar shapes trigger an alarm very early. And even ones that are close 

do so. It is because we are matching curves (high precision) and not trying to get 

detailed information (high accuracy) that this technique is so appealing in this 

application. 

 

Observations 

There is additional work which needs to be done before this can be used in actual sensor 

suites: final testing for this case needs to include an example experiment such as the 

Smoke Detector Tests11.  In addition, the standard qualification tests and a set of 

nuisance signals must be included. This latter will require an instrument transfer 

function, which can be measured using the FE/DE test apparatus12. Finally, the training 



 

 

suite ought to be extended to include the wide range of geometries which exist in 

practice rather than just those used for qualification testing. The training of a neural 

network should allow this extension and would improve the robustness of detection 

systems. This then allows one to include cases which currently cause alarms, such as 

steam, but are clearly not fires. 

 

A further extension would be to go beyond the simple alarm/no-alarm classification we 

have done here and report on nuisance alarms as distinct from fires. Interestingly, a 

cursory inspection of the testing scenarios shows that the network is doing a reasonable 

characterization of the scenarios in terms of the type of fires. It is likely that this work 

could be extended to classification according to Tables 1 through 3. This is important in 

that a nuisance signal is often a precursor to more serious conditions. The prime 

example is the case of an oven (and even more commonly a toaster oven) which can 

develop the right conditions (and measurable effluent) but has a low level fire until a 

door is opened. 

 

Conclusions 

The full gamut of fire detection is possible utilizing currently available sensor 

technology. It has been shown that it is possible to detect fires early and reliably using 

the analog signal of the current generation of fire detectors. The best combination for 

early detection has been shown to be the complement of ionization, photoelectric, 

carbon monoxide and temperature. This is “best” in the sense that it is possible, using 

current day sensors, to see signatures very early, as well as to deduce quantitative 

information beyond the normal tenability limits. 

 

The most useful of the algorithms studied is the curve matching concept embodied in 

neural network methods. In training such algorithms, it is important to use a sufficiently 

large set of training and testing samples so that that the algorithm is robust. We would 

expect a single experiment to provide very early detection for that single response 

curve. However, as the number of training sets is increased, incorporating variations in 

geometry and insult, the time to reliable detection increases. As the number of sensors 

used increases, we expect the detection time to decrease. The trade-off is in the 



 

 

necessity for using large (more than 10,000) sample sets. With a judicious use of 

modeling and experimental testing, this should not be a burdensome exercise. We have 

demonstrated the training of a neural network to shown that it is possible, including 

very early detection. Although we find a 2 % error rate with the present training 

regimen, this is still considerably better than current detection (3 to 30)% as well as 

methods proposed to date (2 to 10)%. 

 
Table 1. Nuisance signals (low likelihood) 

Hairspray, Nail polish remover , bleach, furniture cleaning agents, disinfectants 

Toaster effluents - except as can be classified as incipient fires 

Ovens, Boiling water, coffee, showers and other steam sources 

Dust and sawdust, concrete dust, overcooked popcorn and other microwave products 

Propane and kerosine heaters and stoves, candles, cigarettes and matches 

Heating systems (furnace) 

Table 2. Incipient (long time to disaster) fires 
 

Toaster oven effluents, Welding and arc welding, Cook-top effluents, frying bacon 

Smoldering mattress, chair or other cushion furniture: cotton, down 

Table 3. Fires (prompt) 

Open cellulose fires (crumpled newspaper) 

Flaming mattress, chair or other cushion furniture: cotton and foam 

Liquid pool fire (heptane, gasoline, alcohol, paint thinner, acetone, vegetable oil) 

Wood (wood based) furniture such as bookcases 

Smoldering mattress, chair or other cushion furniture: foam 

Power and signaling cables, Interior wall coverings such as wallpaper 
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Figure 3. Schematic of a network 
layer. 

Figure 1. Delineation of detection 
regions for a flaming fire. 

Figure 2. Carbon monoxide signal in 
SD 37, showing regions for curve 
matching algorithms. 

Figure 4. Time/temperature curve 
for two of the 5000 test cases in 
example one. 

Figure 5. Time/temperature curves for two 
of the test cases for the second example. 
Green markers are for standard detection 
strategies and red for detection with the 
network. The marker labeled 
“preconditioned” is the result of these 
same test cases when the training vector  
is preconditioned for known fires. 
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