
Introduction

During the intervening 15 years since the first publi-
cation of this paper,1 a great many things have changed
in the space business. Of the original introduction that
follows, many things anticipated then did not come to
pass. The international space station is clinging for
survival with less than half its intended crew, 24 years
after its design was begun. Orbital makeup due to
atmospheric drag on that large structure remains an
ever-present problem now that access is limited to a
few Russian Soyuz flights a year. The cost of deliver-
ing a kilogram of load to Low Earth Orbit (LEO) via
the space shuttle was recently assessed at $30,000 when 

considering the full amortization of the standing army
required to prepare it for launch. The failure of the shut-
tle system to reduce costs of transport to LEO is now rec-
ognized. Alternative launch system approaches are being
considered for the future “Crew Exploration Vehicle”
(CEV). Private endeavors, such as Burt Rutan’s novel
SpaceShipOne architecture which recently captured the
Ansari X-Prize, suggest that entrepreneurs may outpace
government efforts in getting to LEO cheaply. Ironically,
such private efforts need a destination to turn them into
profitable tourism offerings—destinations in LEO that
would represent pressurized, large volume habitable
facilities–facilities not unlike those originally foreseen
by many as one use for the shuttle E-tank. Yet, today
there are no fleets of orbiting External Tanks—convert-
ed to Spartan industrial laboratories (or hotels)—as
envisioned in this paper. Despite the inherent utility of
such enormous storage facilities in orbit, that prospect
today appears almost non-existent in the face of E-tank
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TPS shedding being identified as the initiating event in
the loss of the shuttle Columbia in 2003. The E-tanks
became collateral victims in what has become an
inability to accept that exploration and work on the
frontier comes with finite risk. We believe that this is
unfortunate, because when one views the history of the
space shuttle from its inception to its ultimate retire-
ment, planned for 2010, the establishment of a vast
orbital tank farm might have been seen as the greatest
accomplishment of the shuttle era. Two important
reconnaissance spacecraft, flown around the moon in
1994 (DoD’s Clementine) and 1999 (NASA’s Lunar
Polar Orbiter), have since identified the presence of no
less than 10 billion metric tons of hydrogen signature at
the lunar south pole, probably of meteoric (asteroid)
origin and most probably in the form of pulverized
water ice mixed with regolith. That is enough hydrogen
and oxygen to bootstrap a commodity-based positive
return on Earth-moon investment that would serve as a
springboard to the expansion of human exploration
throughout the inner solar system. The E-tanks could
have provided an economical fuel depot for that com-
mercial product in LEO. Of the mathematics that
follow, they are as pure, clean, and compact as they
were in 1989, as if they had never aged, their utility
beckoning.

We feel it is instructive to reproduce below the intro-
duction to the original (1989) paper.

1. Introduction (1989)

Within the next ten years it is anticipated that a sig-
nificant number of structures exhibiting very large drag
profiles will be placed in low earth orbit (LEO). Large
orbital structures are not new: the Echo I experimental
inflatable satellite had a projected drag area of some
725 m2 [6]. What is new is that the facilities planned for
the 1990’s will be at substantially lower altitude than
Echo I (300 km to 500 km vs. 1000 km) and of such
mass (in excess of 30 metric tons) that random re-entry
cannot be permitted on grounds of safety. Significant
engineering problems arise because positive control of
such craft requires motors for attitude and altitude
changes. For asymmetrical structures as much as an
order of magnitude difference can exist in the amount
of fuel required for orbit maintenance depending on
the spacecraft orientation with respect to its velocity
vector. This is of particular concern to entrepreneurial
commercial space companies seeking financing for the
placement of such structures on orbit, since it presently
costs approximately $30,000 per pound in transport
costs to LEO alone.

Of particular interest to the present study is the exter-
nal tank of the Space Shuttle, that is, the U.S. Space
Transportation System (STS). The external tank is
currently the only non-reusable component of the STS.
On a typical launch to an orbit inclined 28.5º with respect
to the equator (a due east launch from Cape Kennedy)
these tanks, which carry cryogenic oxygen and hydrogen
to fuel the three main shuttle engines, reach approxi-
mately 98 % of orbital velocity at an altitude of about
100 km [8]. It is possible for the shuttle to take these
tanks into relatively low orbit for only a modest penalty
in terms of reduced shuttle payload capacity for most
missions and at no penalty on some missions which are
limited by weight and balance considerations [8]. Given
that the amortized cost of taking an object of similar
mass to orbit would be well in excess of $200 million,
there is a compelling argument to consider making use of
these tanks, rather than allowing them to re-enter the
earth’s atmosphere following main engine cut-off
(MECO) as is present practice. The economies of
employing such “used” equipment on orbit were recog-
nized as early as 1976 [10] and several detailed studies
concerning various uses for external tanks were carried
out in the early 1980’s [8,9].

An agreement between the University Corporation for
Atmospheric Research (UCAR) and NASA [14], signed
in December 1988 grants approval to instrument five
STS external tanks for sub-orbital flights within the next
three years. These sub-orbital missions will constitute
tests of flight hardware eventually to be used to place
external tanks in long-term stable orbits. The control of
such tanks, which weigh more than 30 metric tons and
which have a total exterior surface area about half that of
a football field, poses a considerable challenge.
Considering the potentially broad impact that the avail-
ability of such assets on orbit will have on commercial
space enterprises, NIST has undertaken a program to
study the problems surrounding the control and conver-
sion of such structures to habitable facilities on orbit at
the lowest possible cost while maintaining safety. The
problem of controlling an earth-orbiting spacecraft may
be divided into the following four components: orbit
determination, attitude determination, attitude control,
and altitude control. Four principal disturbing forces act-
ing on objects in low earth orbit must be quantified in
order to determine the control requirements described
above. These are gravity-gradient torque, solar radiation
pressure (and induced torque), aerodynamic drag (and
induced torque), and magnetic disturbance torque [5].
The aerodynamic component is dominant at altitudes
below 400 km and is addressed in this paper. Docu-
mentation of the computer code which underlies
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the numerical results reported in the paper will be found
in a forthcoming technical report [16]. Determination of
aerodynamic drag and torque has been investigated
previously in various contexts [2,3,4].

Under the assumptions of free molecular flow
theory, no boundary layer is formed. Molecules re-emit-
ted from a surface do not collide with free stream mole-
cules until far away from the body. One may thus neglect
distortions of the free stream velocity distribution due to
the presence of the body, and assume that aerodynamic
drag force is entirely due to impact of atmospheric
molecules on the spacecraft surface. For hypersonic
flows impinging on cool surfaces, the momentum of
molecules leaving the surface may be neglected. The
impact of molecules in the incident stream may thus be
modeled as inelastic without reflection, that is, the inci-
dent particle’s energy is completely absorbed [1]. It is
also assumed that attitude (orientation) changes are slow
compared to the translational velocity of the spacecraft.

2. Drag Area and Aerodynamic
Eccentricity

Let v denote the unit vector in the direction of the
translational velocity V of the center of gravity of the
spacecraft relative to the incident stream, and let i be
the attitude vector, that is, the unit vector in the direc-
tion of the axis of revolution oriented from rear to front
of the spacecraft. The angle between the velocity
vector v and the attitude vector i is the angle of attack
θ, where: 0º < θ ≤ 180º

Consider the plane P (Fig. 1) which is perpendicular
to v and passes through the center of gravity of the
body, which is assumed to lie on the axis of revolution.
The projection of the shell surface in the direction of v
into plane P will be referred to as the drag profile. Due
to the rotational symmetry of the surface, the shape and
the size of the drag profile depend solely on the angle
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Fig. 1. Geometry of the drag profile of a shell of revolution.



of attack. As we will outline below, the drag force FAERO

and the aerodynamic torque NAERO are determined by
the area ADRAG—referred to as the drag area–and the
center of area moment–referred to as the drag center—
of the drag profile.

The differential drag force dFAERO acting on a surface
element dA with outward unit normal nS is given by:

where ρ is the atmospheric density [5]. Analytical mod-
els for the atmosphere up to an altitude of 110 km [11]
and for altitudes above 90 km [12] are available which
provide seasonal (as affected by solar activity) and
latitudinal values of ρ. The parameter CDRAG is the drag
coefficient and is, in general, a function of the surface
structure. In the limiting hypersonic case, only forward-
facing surface elements contribute to drag and for these
the value CDRAG = 2.0 [7] is suggested.

Note that the factor (nS · v)dA in the above expres-
sion for the differential drag force d FAERO represents
the projection of a surface element dA in direction v
onto plane P. Now the total drag force FAERO is obtained
by integrating the contributions from all forward-facing
exterior surface elements of the spacecraft, that is,
those surface elements for which the product (nS · v) is
positive. The projections of these elements exactly
cover the projection of the total surface, that is, the drag
profile. In other words, 

The total drag force vector may thus be expressed as:

The aerodynamic torque NAERO acting on the space-
craft due to the differential force d FAERO is given by the
integral:

where RS is the vector from the spacecraft's center of
gravity to the surface element dA. The integral is taken
over the spacecraft surface for which (nS · v) is posi-
tive. Substituting for the differential drag force dFAERO

yields:

In order to evaluate the integral in the above expres-
sion, we recall that (nS · v)dA is the projection of surface

element dA into the surface element of plane P. Since
that plane contains the center of gravity of the body,
and since the vector RS originates at that center, the
vector RS × v leads—within plane P—from the center
of gravity to the projected surface element. The integral
in question thus reduces in plane P to a familiar expres-
sion: when divided by area over which the integration
extends, it indicates the location of the center of area
moment of the drag profile, namely, the drag center,
with respect to the common origin of vectors RS, name-
ly, the center of gravity of the body. Denoting by RCG

the eccentricity vector which leads from the center of
gravity to the drag center we thus have:

and

The aerodynamic eccentricity is a scalar whose
absolute value is the length of the eccentricity vector
RCG. It is positive if the drag center leads the center of
gravity in the direction of the attitude vector, which
points from the rear towards the front of the spacecraft,
and negative if it trails. In terms of the attitude vector i:

Due again to the rotational symmetry of the shell and
because its center of gravity lies on the axis of revolu-
tion, the eccentricity depends only on the angle of
attack. The remainder of this paper is devoted to the
description of a numerical procedure for the determina-
tion of the drag area, ADRAG, and the drag center, need-
ed to find the aerodynamic eccentricity eAERO for con-
vex shells of revolution under a specified angle of
attack θ.

3. Description of Shells of Revolution

The present software implementation of our method
is restricted to a particular category—to be character-
ized below—of convex shells of revolution. The geo-
metric shape of the Space Shuttle external tank falls
into that category. We assume the shells to be embed-
ded in x,y,z-space with the x-axis in the direction of the
attitude vector (see Fig. 1). Each shell is characterized
by its “contour,” that is, the graph of a function,

Z = r (x) ≥ 0,

over a closed interval [ x– , x– ] (Fig. 2). The longitudinal
section of the shell in the x, z-plane, whose rotation
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sweeps the volume of the shell, is then bounded above
by + r(x) and below by – r(x). Typically, the domain
[ x– , x– ] will be partitioned into a series of intervals in
each of which the contour function will be expressed by
a suitable parametric equation.

For the shell of revolution to be convex it is neces-
sary and sufficient that the contour function be con-
cave. Beyond this property, we will require that the
contour consists of (see Fig. 2):

1. To the left, an ascending strictly concave func-
tion with unique tangents which starts with a
value of zero, r ( x– ) = 0, and terminates with a
horizontal tangent, r'( x– HORIZ) = 0;

2. In the middle, an optional horizontal line at
maximum function value rMAX (corresponding
to an optional cylindrical middle section of the
shell) which starts at the end of the previous
function, r ( x– HORIZ) = rMAX;

3. To the right, a descending strictly concave func-
tion with unique tangents which starts at the end
r ( x– HORIZ) = rMAX of the cylindrical portion—
provided such is present—with a horizontal
tangent, r' ( x– HORIZ) = 0, and terminates with a
value of zero, r ( x– ) = 0. Where x– HORIZ ≤ x– HORIZ

denote the left and right ends of the horizontal
portion; x– HORIZ = x– HORIZ if there is none present. 

By “strictly concave” it is meant that there is a contin-
ual change of the tangent direction and therefore no
straight line segments in the graph of the function to
which the term is applied. Thus the horizontal straight
line representing the optional cylindrical middle
section is the only straight line segment permitted
presently in the contour. Since the above left portion
of the contour function terminates at its right with a
horizontal tangent and the above right portion starts
with a horizontal tangent to its left, each point of the
entire contour function has a unique slope. The contour
function is therefore differentiable everywhere in the
interior of the domain. The above partitionability of the
contour function into an ascending, a descending and,
optionally, a horizontal portion does not mean that only
three parametric equations are permitted for the
description of the contour function: any number of such
equations can be used as long as the resulting function
meets the above requirements.

At the endpoints x– and x– of the domain of the
contour function, we permit infinite values for its deriv-
atives. That is, r' ( x– ) = + ∞ and/or r' ( x– ) = – ∞ may
hold, indicating vertical end tangents. In those cases,
the ends ( x– , 0,0) and ( x– , 0,0), respectively, of the shell
of revolution are “rounded.” They are “pointed” at
those ends if the corresponding end tangents are non-
vertical. For instance, the shell of revolution generated
by the contour depicted in Fig. 2 has a pointed left end
and a rounded right end.
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Fig. 2. Schematic of a shell contour with cylindrical portion.



For the applications considered here, the shell of
revolution represents the shape of a physical object
such as the Space Shuttle external tank. In this case, it
will be convenient to locate the origin of the coordinate
system at the center of gravity of the physical object.
For the external tank, this center of gravity would be
chosen for an empty tank, or a tank with a uniform
pressurized internal atmosphere such as might exist
following on-orbit modifications to create a shirt-
sleeve workshop. The effects of residual fuel sloshing
and dynamically shifting the location of the center of
gravity are beyond the scope of this paper.

In the previous section, a velocity vector v was intro-
duced. Because of the rotational symmetry, we may
assume that this vector lies in the vertical z, x-plane.
The angle θ between the velocity vector v and the
x-axis, or attitude vector, is the angle of attack. The
vector v also determines the plane P which is perpendi-
cular to it and contains the origin of the x,y,z-coordinate
system, that is, the center of gravity as shown in Fig. 1.
This plane contains the y-axis. The intersection of P
with the z,x-plane yields a line that is perpendicular to
the y-axis, and can be selected as the u-axis of the u,y-
coordinate system in that plane P. We direct the u-axis
so that its angle with the x-axis lies between 0° and 90°.
The orthogonal projection, that is, the shadow cast in
the direction of the velocity vector v by the shell of
revolution onto the plane P is the drag profile, whose
shape, area ADRAG , and center of area moment, the drag
center (uDRAG, 0) are at issue. Since both + v and – v
yield the same drag profile in the same plane P, we
may assume without loss of generality that the angle
of attack θ lies between 0° and 90°: 0° ≤ θ ≤ 90°. If 0°,
then the drag profile is given by the circular cross
section of largest diameter. We will therefore assume in
the next two sections that θ is positive:≤θ

0° ≤ θ ≤ 90°.

4. Discretization of Shells of Revolution

Our method for determining the drag profile is based
on approximating the contour function z = r(x) in a
piecewise linear fashion as follows:

from its domain [ x– , x– ], and connect adjacent points
(xi, zi = r (xi)), (xi + 1, zi + 1 = r (xi + 1)) in the graph of the
contour function by straight line segments. The result-
ing shell of revolution consists of a sequence of slices
of circular cones or of cylinders, the circular top of one

forming the base for the next. The orthogonal projec-
tion of such a “piecewise conical” shell of revolution
can be described in closed form as described below. A
different way of looking at the same procedure is as a
discretization method that approximates the given shell
of revolution by a finite sequence of circular cross sec-
tions, which project a finite sequence of circular cross
sections, which project into a sequence of similar and
parallel ellipses. The drag profile is then approximated
by the convex envelope, that is, the smallest convex set
enclosing those ellipses.

The approximate drag profile is thus determined by a
sequence of ellipses Ei, i = 1,…,n. The centers of these
ellipses are located on the u-axis of plane P with coor-
dinates ui = xi sin θ. The major axes ai = r (xi) are in the
direction of the y-axis. The minor axes lie on the u-axis,
their length given by bi = ai cos θ. The equation of the
ellipse Ei is therefore:

The first and the last of these ellipses may be degen-
erate, ai = bi = 0, and consist of a single point.

If any ellipse in the above sequence is contained in a
neighboring one, then such an ellipse can be deleted
without changing the convex envelope. This usually
happens at the beginning and the end of the sequence of
ellipses. More precisely, there is a largest index i- such
that ellipse Ei contains all previous ellipses Ei, i < i- .
Analogously, there is a smallest index i- such that ellipse
Ei contains all subsequent ellipses Ei, i >i- where:

Since none of the ellipses Ei with i-≤ i ≤ i- contains
any of the others, all that is necessary in order to delin-
eate their convex hull is to join subsequent ellipses by
their common tangents. We should clarify that we mean
those common tangents which have the ellipses on
equal rather than different sides.

As a result, the approximate drag profile is described
in the u, y-plane P by a concave function y = p(u) over
a domain [ u– , u– ] with zero values at the endpoints.
That domain is partitioned into segments in which the
graph of this function is represented, in alternating
fashion, either by a straight line or by an elliptical arc
(Fig. 3). The first and last segments are elliptical
segments. Thus u– is the left minor axis point of ellipse
Ei, whereas u– is the right minor axis point of ellipse Ei.
This yields for the endpoints of the approximating drag
profile:

u– = ui – bi, u– = ui + bi .
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We denote the break points for the partition into
straight and elliptic segments by:

The possibility that vi-
= wi-

and vi
- = wi

- reflects the
fact that the ellipses Ei-

and Ei
- at the beginning and the

end of the approximate drag area may be just single
points. The corresponding segments are then of zero
length.

The following quantities, which are independent of
the angle of attack θ, play a role in determining expres-
sions for breakpoints vi, wi:

With these quantities, we have:

For the corresponding y-coordinates we find using the
equation of ellipse Ei:

where

In general, the elliptical arcs will be much smaller than
the straight line segments except for the first and last

elliptical arcs which may well be longer. We therefore
recommend replacing all intermediate elliptic arcs by
their chords while keeping elliptic arcs at the ends. The
corresponding calculations of drag area and drag center
can be carried out in closed form.

The total approximate size ATOT of the drag area
ADRAG is the sum

of the areas of the vertical “strips,” above and below the
u-axis, into which the drag profile has been divided. All
such strips with the possible exception of the first and
last ones are trapezoids that are symmetric about the
u-axis. Those strips which were originally bounded by
elliptical arcs have area

for i-≤ i ≤ i- . For those strips which were trapezoidal
from the beginning, we find

for i-≤ i ≤ i-. The two elliptic end-strips have areas

Due to the symmetry of the drag area about the u-axis,
the drag center lies on the u-axis, and its y-coordinate
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Fig. 3. Convex envelope of elliptic projections of circular cross sections.
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yDRAG is therefore zero. Let c(vi,wi), c(wi, vi+1) denote the
centers of area moment of their respective strips.
Defining

we find approximately for the u-coordinate uDRAG of the
drag center,

Again we consider the two kinds of trapezoidal
strips. For those that were originally elliptical, we find
for i-≤ i ≤ i-:

for the strips bounded by common tangents, we have
for i-≤ i ≤ i-

The two elliptic end-strips, finally, contribute as follows:

5. Selecting Cross Sections

The next question concerns the selection of the cross
sections, that is, of the locations of xi. Clearly, we want
to include the end points of the contour curve: x1 = x– ,
xn = x– . If a cylindrical middle section is present, then
cross sections are needed only at the beginning x– HORIZ
and the end x– HORIZ of that section. Indeed, intermediate
cross sections in the cylindrical portion clearly do not
contribute to the convex envelope.

As to selecting cross sections in the ascending or
descending portions, the density of the cross sections
should increase with the curvature of the contour func-
tion. A straightforward way to achieve this is to select
according to equal increments δ of tangential angles as
follows. For a positive integer m we consider the angles
(see Fig. 4).
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ak = 90° – (k – 1)δ for k = 1,2, . . . , 2m + 1

with angle increment

Then we select those x-coordinates for which the
contour function z = r(x) has the prescribed tangential
angles ak, and place the cross sections there.

Determining the x-coordinates at which the given
angles ak are assumed is by a straightforward biparti-
tion scheme based on the derivatives of the given para-
metric equations. In the case of a pointed left end
the first angle ak to be considered is the largest one
smaller or equal to the contour angle at that end.
Analogous restrictions hold if the right end is pointed.

In addition, we link the choice of the integer m,
which determines the above increment δ to the angle of
attack θ so that it occurs among the tangential angles
aK. In that case, both ends u– , u– of the approximate drag
profile are exactly the ends of the actual drag profile.
This is because the two x-coordinates at which tangents
of angles ±θ , respectively, touch the graph of the con-
tour function can be found among the selected coordi-
nates xi. The ensuing conceptual simplification of the
methodology, together with numerical advantages, jus-
tifies in our opinion the minor additional effort of plac-
ing the cross section coordinates according to equal
increments of tangential angles. It usually has to be
done only once for a series of angles of attack θ .

6. Analysis of the Space Shuttle External
Tank and its Two Major Components

From engineering drawings [15] and oral communi-
cations [13] we derived measurements for a prototype
external tank and its components, the LO2 and LH2
tanks.2 These measurements are indicated in Fig. 6.
They do not refer to a particular tank—there are small
differences between individual tanks—and the results
given in this paper are not intended for any specific
application but rather for demonstration of feasibility.
All measurements are in inches from the base of the
lightening rod at the forward tip of the external tank.

The front is formed by the LO2 tank, whereas the LH2
tank, with two symmetrical rounded ends, forms the rear.
These two component tanks each have cylindrical
middle sections, which extend into the connecting cylin-
drical portion of the entire external tank. Parametric
equations employed to describe the contours of these
shells of revolution are also shown in Fig. 6.

Appendages such as the LO2 feedline and the for-
ward and aft orbiter connection truss assemblies have
not been included in these analyses due to the present
limitation of being able to handle only one shell of
revolution at a time. However, the above mentioned
appendages are relatively small, with respect to the area
of the overall tank, and should not greatly affect the
results for orbital lifetime and station-keeping fuel
calculations. Because the tank is modeled as a shell of
revolution the results are insensitive to changes in roll
angle about the axis of revolution.

Figure 5 presents, in tabular form, the results of an
analysis of the whole external tank at three representa-
tive angles of attack. These drag profiles indicate that the
algorithm is sufficiently robust to handle all possible
angles of attach from 0° to 90°.

Some comments are in order concerning the general
numerical performance of the method. The choice of
the angle increment δ guides the selection of the cross
sections: the smaller δ, the larger the number of cross
sections. As one might expect, accuracy grows with the
number of cross sections. Typically for discretization
methods, however, there are limits beyond which
further refinement of the discretization yields no
improvement. This is due to the finite word-length of
the computer—calculations are carried out in single
precision—as well as subsidiary computations such as
the determination of cross section location by pre-
scribed tangential angles. For our calculations concern-
ing the Space Shuttle external tank and its components,
the limit appears to be reached for angle increment
δ = 0.2°. With this limitation, the algorithm achieves a
mathematical accuracy of five significant digits for the
drag area, and three for the eccentricity. The latter is
more sensitive because, for this particular application,
the center of gravity and the drag center tend to be
close.

In order to represent the drag area and the aerody-
namic eccentricity of the external tank as a function of
the angle of attack θ, the above quantities of interest
have been evaluated at suitable intervals in preparation
of fitting suitable regression equations. Certain inherent
properties of these functions, however, should be pre-
served. Thus, the value A0 of the drag area for θ = 0° is
exactly the area of the circular cross section of maximum
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90 .
m

δ °=

2 Both references listed, as well as NASA manufacturing and engi-
neering drawings for the External Tank, utilize units of inches for
length measurement. While it is NIST standard practice in 2004 to
use SI units, for the purposes of this historical document we have
retained the system of units originally presented in the paper in 1989
for the remaining figures. SI readers will note that 1 inch = 25.4 mm
and 1 in2 = 6.4516 cm2.
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Fig. 5. Drag profiles and eccentricities for the entire external tank.



diameter. That known value should be precisely repro-
duced. In addition, the drag area function has a maxi-
mum with horizontal tangent at θ = 90°. Analogously,
the aerodynamic eccentricity vanishes for θ = 0° and
also has a horizontal tangent at θ = 90°. These two
considerations suggest fits of the functional forms
A0 + P(sin θ ) sin θ and Q(sin θ ) sin θ respectively,
with polynomials P and Q determined by the least squares
regressions:

Such regression equations were obtained for the entire
external tank as well as its two constituent tanks. They
were based in each case on 18 evaluations with θ rang-
ing from 5° to 90° at intervals of 5°. For these evalua-
tions, the cross sections were placed according to an
angle increment δ = 0.25°. The equation for drag area as
a function of angle of attack, θ , for the entire tanks is
given by:

The units for ADRAG are square inches. Similarly, the
aerodynamic eccentricity can be represented as follows:

The units for eAERO are inches. Both equations are valid
for 0° < θ ≤ 180°.

The results are shown in Figs. 7-12, which also con-
tain plots of curves, representing regression equations,
against data points, representing evaluations. The plots
indicate agreement within at least two significant
digits. All regression equations are valid for 

0° < θ ≤ 180°

where θ denotes the angle of attack. Should a value of
θ between 180° and 360° be specified, then it has to be
replaced by (360°–θ ).

Note that, for the symmetric LH2 tank, the eccentric-
ity is given as a pure sine wave. This is not an approx-
imation: if the shell of rotation has a center of sym-
metry, then the eccentricity of that shell as a function of
the angle of attack is exactly of the form e sin θ for
any position of the center of gravity along the axis of
revolution.
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Fig. 6. Measurements and parametric equations for external tanks.
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Fig. 7. Equation for drag area of entire tank.

Fig. 8. Equation for drag area of LO2 tank.
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Fig. 9. Equation for drag area of LH2 tank.

Fig. 10. Equation for eccentricity of entire tank.
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Fig. 11. Equation for eccentricity of LO2 tank.

Fig. 12. Equation for eccentricity of LH2 tank.



7. Derivation of Breakout Formulas

We will now address the derivation of the expres-
sions used above for the contour breakpoints vi and wi.
We will prove that for i-≤ i ≤ i-:

where

Here ai and ai+1 are the major axes and bi and bi+1 the
minor ones, and ui = xi sinθ, ui+1 = xi+1 sinθ the u-coor-
dinates of the centers of the two consecutive ellipses Ei

and Ei+1.
There are, in general, two pairs of common tangents.

Here we are only concerned with those common
tangents that leave both ellipses on the same side. Such
tangents exist if one ellipse does not contain the other.
If both ellipses are of the same size, ai = ai+1, then the
aforementioned formulas are obviously correct. Thus
we are left with the case ai ≠ ai+1. In this case there
exists a center of similarity (uSIM, ySIM) = (uSIM,0) on the
u-axis such that the scale to which the ellipses are
drawn is proportional to their distance from that center.
For the major axes ai, ai+1 that implies:

From this

It is also clear that any straight line connecting simi-
lar points of the two ellipses, respectively, must pass
through the center of similarity. The points of equal
slope above—and also those below–the u-axis on each
ellipse are such similar points. The two common
tangents, in particular, intersect therefore at that center.
It follows that the vertical line u-wi, which connects the
points of contact of those tangents, is the polar of the
center of similarity with respect to ellipse Ei and must
thus agree with the line described by the well-known
formula for the polar:

Thus, and since bi = ai cosθ,

An expression for uSIM–ui has just been derived and
upon substitution yields the desired expression for wi.

8. Concluding Remarks (1989)

The numerical method presented in this paper has the
advantage of providing a self-contained subroutine
which can be inserted directly into an orbital lifetime
and station keeping analysis program. The method
extends naturally to shells of revolution which are not
members of the category treated in this paper. We are
planning to extend software capabilities accordingly to
permit straight line segments in the contour other than
the horizontal one, and to relax the requirement for
unique tangents at each point along the shell. Beyond
this we feel that even the requirement of convexity can
be relaxed and that small appendages and their shield-
ing effects can be treated as long as these appendages
are shells of revolution themselves with axes parallel to
the axis of the main body.

Post Scriptum
A slightly extended version of this paper was pub-

lished in the Journal of Aerospace Engineering [16] in
1991. By that time a number of follow-on studies had
been performed at NIST and elsewhere relating to the
stabilization of the external tank in LEO. Importantly,
propulsion and orbital lifetime calculations (accounting
for atmospheric drag using the procedures developed in
this paper) were conducted at NIST [17, 18] in 1990.
Tentative engineering designs were developed for an
aft propulsion and guidance package that could be
strapped to the stern of the E-tank and would permit
autonomous testing of the ability to guide the E-tank,
post-MECO, and to store it in LEO. The following
summary, from reference [17], attests to just how little
effort would have been involved to do so:

“… it was calculated that the space shuttle external
tank can be boosted to a short term stable orbit
following standard MECO separation from the
shuttle orbiter, and without any direct interaction nor
detriment to orbiter performance. An exterior propul-
sion package for the external tank equipped with a
minimum thrust capacity of 4,448 N (1,000 lbf), a
propellant mass of 500 kg (1,100 lbm), and an ISP of
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400 s appears sufficient to achieve an initial time in
orbit of nearly two days under solar maximum con-
ditions, provided the burn is made at initial apogee
and the angle of attack is maintained near zero
degrees by an onboard attitude control system. It is
assumed that additional velocity change burns will
take place following the initial burn which will place
the tank in a circular orbit between 400 km to 500 km
altitude for long term storage. Initial estimates of the
total fuel required to achieve a 500 km circular stor-
age orbit come to 2,059 kg (4,537 lbm) based upon
Hohmann transfer theory following the initial apogee
burn. All calculations assumed 5,000 lbm (2,270 kg)
of residual cryogens in the external tank following
MECO as deadweight. Recovery and use of these
propellants by the exterior propulsion package would
lead to a dramatic increase in the time in orbit above
the values reported in this paper.”

Thus, an expenditure of two metric tons of propellant
and the addition of a likely 2-400 kg of guidance and
propulsion structure in the aft control package would
have placed in long term orbit 32 metric tons of high
grade aerospace structure with a redundant, pressuriz-
able internal volume of 2,069 m3—more than 10 times
that of the International Space Station in 2004—that
could be put to use by industry for commercial labs,
fuel depots, construction shacks, hotels and the like. In
today’s dollars this would have equated to an invest-
ment of $69M (if the aft propulsion package was paid
for at the going rate per kilogram to LEO) to place a
$960M asset in orbit (32 metric tons of E-tank x $30K
per kg), an investment leveraging of 14 to 1. In actual-
ity, the cost of the aft propulsion package would have
amounted to only the engineering development costs
and the integration of off-shelf technology for an aggre-
gate outfitting expense of less than $10M per tank and
possibly as low as $2M to $5M per tank after the initial
concept had been demonstrated. The extra mass does
not need to be considered in this particular case.

One might conclude in light of the above arguments
that action would have been taken to capitalize on these
concepts. This was not the case, however, and the final
part of the story is worth telling. On the basis of the
calculations in [17, 18] and with the encouragement of
industry, NIST developed a proposal to conduct an on-
orbit test to stabilize the E-tank and ultimately to cause
it to re-enter in a controlled fashion following conclu-
sion of the test flight. It was proposed, furthermore, to
have a NIST scientist be the payload specialist for that
mission. The proposal was examined by industry (The 

External Tanks Corporation as well as the Martin-
Marietta division that manufactured the tanks) and had
the support of the National Corporation for Atmos-
pheric Research (NCAR) and the scores of universities
that it represented. With that blessing the proposal
made its way up the management chain until it became
apparent at the Commerce level that there was a prob-
lem. The problem had nothing to do with the validity of
the engineering. Simply put: the placement of such a
large, pressurized, human-rated facility in LEO was
viewed as competition to the International Space Station.
Contracting companies, recognizing that their contract to
continue production of the E-tank might be in jeopardy,
ceased support for alternative uses of the vessel. The
political hot potato was quietly dropped. America
would tolerate only one “space station” project. Today,
the entrepreneurial space community has written off the
possibility of using E-tanks in orbit—a casualty of their
political baggage—and is looking at other alternatives
(mainly inflatable structures that can be launched
from standard ELVs) for placement of large, lightweight
facilities in orbit that they, not government, will control.

References
[1] V. V. Beletskii, Motion of an Artificial Satellite About its Center

of Mass, NASA publication, TTF-429, 1966.
[2] D. M. Gottlieb, C. M. Gray, and S.G. Hotovy, An Approximate

Shadowing Technique to Augment the Aerodynamic Torque
Model in the AE-C Multi-Satellite Attitude Prediction and
Control Program (MSAP / AE), Computer Science Corp.,
3000-257-01TM, October 1974.

[3] T. E. Suttles and R. E. Beverly, Model for Solar Torque Effects
on DSCS II, AAS / AIAA paper No. AAS 25-095, AAS / AIAA
Astrodynamics Specialist Conference, Nassau, Bahamas, July
1975.

[4] N. W. Tidwell, Modeling of Environmental Torques of a Spin-
Stabalized Spacecraft in Near-Earth Orbit, J. of Spacecraft,
Vol. 7, pp. 1425-1435, 1970.

[5] Spacecraft Attitude Determination and Control, James R.
Wertz, ed., D. Reidel Publishing Co., Boston, U.S.A., 1986,
Distributed by Kluwer Academic Publishers, 101 Philip Dr.,
Norwell, MA 02061.

[6] S. F. Hoerner, Fluid Dynamic Drag, Chapter 18: Drag
Characteristics at Hypersonic Speeds 1965. Library of
Congress Catalog Card #64-19666.

[7] S. A. Shaaf and P. L. Chambre, Flow of Rarefied Gases,
Number 8, Princeton Aeronautical Paperbacks, Princeton, New
Jersey, Princeton University Press, 1961, 55 pp.

[8] J. R. Arnold, et.al., The Process of Space Station Development
Using External Tanks, Report by the External Tank Working
Group of the California Space Institute, Scripps Institution of
Oceanography, to the Office of Technology Assessment, Space
Station Review Project, March 1983.

[8] Utilization of the External Tanks of the Space Transportation
System, Arnold, J. R., ed., California Space Institute, Scripps
Institution of Oceanography, La Jolla, CA, April 1983.

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

158



[10] External Tank Utilization for Early Space Construction Base,
Marshall Space Flight Center, December 1976.

[11] G. V. Groves, Seasonal and Latitudinal Models of Atmospheric
Temperature, Pressure, and Density, 25 to 110 km, Air Force
Cambridge Research Laboratories Report 70-0261, 1970.

[12] L. G. Jacchia, Revised Static Models of the Thermosphere and
Exosphere with Empirical Temperature Profiles, SAO Special
Report 332, 1971.

[13] Faye Baillif, Martin Marietta Office of Advances Programs,
personal communication, January 1988.

[14] NASA MOU #1560-001, Utilization of Space Shuttle External
Tanks, December 1988.

[15] Space Shuttle External Tank (Light Weight Model): System
Definition Handbook, Volume II, Martin-Marietta, Michoud
Division, New Orleans, LA, Document # NAS8-30300 REV A,
April 1983.

[16] W. C. Stone and C. Witzgall, Drag and Aero-Torque for Convex
Shells of Revolution in Low Earth Orbit, ASCE J. Aerospace
Engineering, Vol. 4, No. 2, April 1991, pp. 145-164.

[17] W. C. Stone and G. S. Cheok, Autonomous Propulsion System
Requirements for Placement of an STS External Tank in Low
Earth Orbit, NISTIR-89-4208, Natl. Inst. Stand. Technol.,
Gaithersburg, MD 20899, November 1989.

[18] W. C. Stone and G. S. Cheok, Post-MECO Propulsion System
Requirements for Placement of an STS External Tank in Low
Earth Orbit, Engineering, Construction, and Operations in
Space II, Proceedings of Space 90, Albuquerque, NM, April 22-
26, 1990, ASCE, New York, NY. Vol. 2, pp. 917-926.

About the authors: Bill Stone has been with NIST
since 1981. Until 2004 he was leader of the Con-
struction Metrology and Automation Group of the
Materials and Construction Research Division of the
Building and Fire Research Laboratory. He is the
recipient of the Department of Commerce Bronze
Medal in 1987 and the Silver Medal in 2001. He is
currently on leave. Christoph Witzgall holds the desig-
nation of Scientist Emeritus from the NIST Information
Technology Laboratory (ITL). Although he retired from
government service in 2003, he continues to serve as a
guest researcher in the ITL Mathematical and Compu-
tational Sciences Division. Christoph has been associ-
ated with NIST since 1962, serving as Acting Chief of
its Operations Research Division from 1979 to 1982.
He received the Department of Commerce Silver Medal
for meritorious Federal service. The National Institute
of Standards and Technology is an agency of the
Technology Administration, U.S. Department of
Commerce.

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

159


