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cBuilding and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
dMaterials Laboratory, Institute for Research in Construction National Research Council, Ottawa, ON, Canada, K1A 0R6

Received 23 September 2003; accepted 12 July 2004
Abstract

A description of ionic transport in unsaturated porous materials due to gradients in the electro–chemical potential and the moisture content

is developed by averaging the relevant microscopic transport equations over a representative volume element. The complete set of equations

consists of time-dependent equations for both the concentration of ionic species within the pore solution and the moisture content within the

pore space. The electrostatic interactions are assumed to occur instantaneously, and the resulting electrical potential satisfies Poisson’s

equation. Using the homogenization technique, moisture transport due to both the liquid and vapor phases is shown to obey Richards’

equation, and a precise definition of the moisture content is found. The final transport equations contain transport coefficients that can be

unambiguously related to experimental quantities. The approach has the advantage of making the distinction between microscopic and bulk

quantities explicit.

D 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past decade, a great deal of effort has been

specifically devoted to the investigation of ion transport

mechanisms in unsaturated cement systems. The topic is

important because, in many cases, concrete structures

exposed to ionic solutions are also frequently subjected to

wetting and drying cycles. The coupled transport of

moisture and ions often tends to accelerate physical and

chemical degradation mechanisms and reduce the service

life of the material [1–3].

Reports recently published on the subject have largely

contributed to clarify some fundamental aspects of ion

transport mechanisms in unsaturated concrete. Many inves-
0008-8846/$ - see front matter D 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cemconres.2004.07.016

* Corresponding author. SIMCO Technologies Inc., 1400, Boul. du
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tigations have also emphasized the intricate nature of these

phenomena. If most of the difficulties related to the

description of transport processes in concrete are linked to

the intrinsic complexity of the material, it appears that part

of them also lies with the fact that authors have used many

different approaches to study these processes. For instance,

the definitions of the state variables used to describe the

various transport processes tend to vary significantly from

one study to another. This is most unfortunate because the

lack of a unified approach often contributes to confuse the

issue.

This paper is an attempt to clarify some fundamental

aspects of the problem. The transport mechanisms are

described using a well-established mathematical procedure,

the homogenization technique. The technique has been

recently used to investigate the diffusion of ions in saturated

systems [4]. According to this approach, the transport

equations are first written at the pore scale. They are then

averaged over the scale of the material. The main advantage
rch 35 (2005) 141–153
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of the homogenization technique lies in the clear definition

of the state variables.

The paper first addresses the process of moisture transport

in an unsaturated porousmaterial. For the completely coupled

transport of ions in an unsaturated media, dynamical

equations are required to express the moisture content as a

function of time. This is achieved by averaging microscopical

equations for both liquid and water vapor transport. The

mathematical development yields the Richards’ equation,

and the moisture content and the transport coefficients are

well defined.

The second part of the paper is devoted to the coupled

transport of ions and moisture in the system. Here, the field

quantity is the concentration of the ions within the pore

solution. The homogenization technique is applied to a

microscopic equation for both diffusive and convective

transport. While diffusive equations already exist, reformu-

lating the bulk equations using homogenization ensures that

the transport coefficients are well defined (pore space versus

microscopic quantities) and can therefore be unambiguously

related to experimental quantities.
Fig. 1. The representative elementary volume (REV).
2. Water transport in unsaturated porous materials

The first objective is to develop an equation to

characterize the mass transport of water in an unsaturated

porous material. Richards [5] was among the first authors

to study the mechanisms of water transport in unsaturated

porous solids. In 1931, he proposed the following

equation to describe the flow of water under capillary

suction:

Bh
Bt

� div KgradCÞ¼ 0ð ð1Þ

where h is the water content, K is the permeability of the

porous material, and C is the capillary potential.

This relationship, known as Richards’ equation, was later

modified to express the transport of mass solely as a

function of the gradient in water content. This modification

is based on the assumption that the capillary potential C is a

differentiable function of the moisture content h:

C ¼ f hð Þ ð2Þ

This allows to write:

gradC ¼ dC
dh

gradh ð3Þ

Substituting Eq. (3) into Eq. (1), one finds:

Bh
Bt

� div Dhgradhð Þ ð4Þ

where Dh=K(dC/dh) is the nonlinear water diffusivity

coefficient. Eq. (4) is widely used to model the evolution

of water content in a porous material kept in isothermal

conditions. Eq. (4) is also known as Richards’ equation.
While Richards’ equation is commonly accepted among

scientists, its use over the past decades has contributed to

some confusion on how to describe moisture transport

mechanisms in unsaturated porous materials. Richards

originally wrote the equation with the water content

expressed in cubic centimeters of water per gram of dry

material. Over the years, some authors have preferred to

define water content in kilograms of moisture per kilogram

of dry material [6] or in kilograms of water per cubic meter

of material [7,8]. However, most authors have traditionally

chosen to express the variable in cubic meter of water per

cubic meter of material [9–11]. To add to the confusion,

many authors tend to define the moisture content as the sum

of liquid water and vapor, while some others only consider

the liquid phase.

2.1. General considerations

In an attempt to clarify these concepts, Richards’

equation will be derived using the homogenization techni-

que. To simplify the problem, the derivation is based on the

assumptions that the isotropic porous material is an

infinitely rigid solid (no significant deformations) kept

under isothermal conditions (i.e., the transport of water is

solely due to capillary suction). Other assumptions will arise

during the development of the model.

The mathematical rules of the averaging technique can be

found in textbooks [12,13]. Only the basic definitions will

be exposed in the following paragraphs. More information

on the technique can also be found in Ref. [4]. The

technique is outlined here because it is at the core of

development of all the transport equations.

As previously mentioned, the homogenization technique

starts with a conservation and a transport equation at the

microscopic level (i.e., at the scale of the pore). These

equations are then integrated over a Representative Ele-

mentary Volume (REV), such as the one depicted in Fig. 1.

The size of the volume depends on the intrinsic properties of

the material. For instance, for concrete and mortar mixtures,

the size of the REV depends on the maximum diameter of

the aggregate particles. For the hydrated cement paste, the

REV is typically a few cubic centimeters.
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The total volume of the REV is given by Vo. The volume

occupied by the liquid phase is designated by Vo
L. The

volumetric fraction of liquid hL is the ratio of the liquid

volume to the total volume:

hL ¼ V L
o

Vo

ð5Þ

The gaseous phase occupies a volume Vo
G. It is a mixture of

air and water vapor. It is assumed that both air and the water

vapor fill the whole gaseous phase volume. As for the liquid

phase, the volumetric fraction of gas hG is the ratio of the

gas volume to the total volume:

hG ¼ VG
o

Vo

ð6Þ

In the remainder of the text, the superscripts L and G will

designate the liquid and gaseous phases, respectively.

Furthermore, the superscript V will represent the water

vapor phase within the total gaseous phase.

Let aa denote the amount per unit volume of some

extensive quantity A in the phase a, either solid, liquid, or

gas. Concentration or mass density can serve as examples

for aa. Two averages can be defined. The volumetric phase

average is given by:

aa
P ¼ 1

Vo

Z
V a
o

aadV ð7Þ

The volumetric intrinsic phase average is defined as:

aa
Pa ¼ 1

V a
o

Z
V a
o

aadV ð8Þ

The two values are related by the following relationship:

aa
P ¼ haaa

Pa ð9Þ

2.2. Transport of liquid water

The continuity equation for liquid water is given by

[14,15]:

BqL

Bt
þ div qLvLÞ ¼ 0ð ð10Þ

where qL is the mass of liquid water per unit volume of

liquid phase and vL is the velocity of water. The bulk

equation is obtained by averaging Eq. (10) over the REV:

1

Vo

Z
VL
o

�
BqL

Bt
þ divðqLvLÞ

�
dV ¼ 0 ð11Þ
This integral can be divided in two parts:

1

Vo

Z
VL

o

BqL

BT
dV þ 1

Vo

Z
VL

o

div qLvLÞdV ¼ 0ð ð12Þ

Using the definition of the volumetric phase average (Eq.

(7)), one can write:

BqL

P

Bt
þ divðqLvLÞ
P

¼ 0 ð13Þ

The average of the time derivative gives [12,13]:

B hLqL
PLð Þ
Bt

¼ BqL

P

Bt
þ 1

Vo

Z
SLGo

qLud nLGdS

þ 1

Vo

Z
SLSo

qLud nLSdS ð14Þ

where So
LG is the surface of the liquid/gas interface, So

LS is

the surface of the liquid/solid interface, u is the velocity of

the interface, nLG is a unit vector pointing outward the

liquid phase at the liquid/gas interface, and nLS is a unit

vector pointing outward the liquid phase at the liquid/solid

interface. Because it is assumed that the deformations of the

solid matrix could be neglected, the last integral on the

right-hand side of Eq. (14) can be dropped, which leaves:

B hLqL
PLð Þ
Bt

¼ BqL

P

Bt
þ 1

Vo

Z
SLGo

qLud nLGdS ð15Þ

The average of the divergence in Eq. (13) is given by

[12,13]:

P
divðqLvLÞ ¼ div

�
hLðqLvL
PLÞ

�
þ 1

Vo

�
Z
SLGo

qLvLd nLGdS þ 1

Vo

�
Z
SLSo

qLvLd nLSdS ð16Þ

At the solid/liquid interface, it is assumed that the liquid

velocity is zero (the so-called no-slip condition of fluid

mechanics [16]). Hence, the last integral on the right-hand

side of Eq. (16) can be neglected, which leaves:

divðqLvLÞ
P ¼ divðhLðqLvL

PLÞÞ þ 1

Vo

�
Z
SLGo

qLvLd nLGdS ð17Þ

Substituting Eqs. (15) and (17) in Eq. (13), one finds:

BðhLqL
PL

�
Bt

þdiv
�
hL
�
qLvL
PL

��
þ 1

Vo

Z
SLGo

qL vL � uð Þd nLGdS ¼ 0 ð18Þ
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According to Whitaker [15], the integral in Eq. (18)

corresponds to the rate of vaporization per unit volume of

the liquid phase at the liquid/gas interface and is denoted by

ṁm
P

. In addition, the average value qL
PL

corresponds to the

density of the liquid qL, which can be assumed constant. Eq.

(18) can thus be simplified:

qL

BhL
Bt

þ qLdiv hLvL
PL
�
þ ṁm
P ¼ 0

�
ð19Þ

The next step consists of determining the average value

of the liquid velocity. The starting point is the Darcy

equation [17]:

vL
P ¼ � K

l
gradP þ qLgð Þ ð20Þ

The quantity vL
P

is the bulk velocity of the liquid, K is the

permeability of the material, l is the viscosity of the fluid, P

is the pressure on the liquid, and g is the gravitational

acceleration. Darcy originally derived this equation to

describe the transport of water through the material at the

macroscopic scale. Whitaker [15] showed that in materials

having very small pores, the capillary forces are dominant:

vL
P ¼ � k

l
hLgradpc

P ð21Þ

The quantity pc is the capillary pressure and k is the

permeability of the liquid-filled pore space.

Eq. (21) is based on the assumptions that gravity effects

are negligible and that the pressure is uniform throughout

the liquid and gaseous phases. It should also be emphasized

that the validity of the equation also rests on the hypothesis

that the liquid phase is continuous. The latter assumption

will be further discussed in the last section of this report.

The bulk velocity of the liquid vL
P

can be related to its

intrinsic average counterpart through:

vL
P ¼ hLvL

PL ð22Þ

Substituting Eqs. (21) and (22) into Eq. (19) gives:

qL

BhL
Bt

� qLdiv
K

l
hLgradpc

P

�
þ ṁm

P ¼ 0

�
ð23Þ

Since pc
P ¼ f hL

��
[15], the chain rule allows to write:

gradpc
P ¼ dpc

P

dhL

�
gradhL

�
ð24Þ

The substitution of Eq. (24) in Eq. (23) gives:

qL

BhL
Bt

� qLdiv
K

l
hL

dpc
P

dhL
gradhL

�
þ ṁm

P ¼ 0

�
ð25Þ

Let

DL ¼ K

l
hL

dpc
P

dhL
ð26Þ
Eq. (25) is now expressed as a function of a single field

quantity hL to give a complete description of liquid water

transport:

qL

BhL
Bt

� qLdiv DLgradhLð Þ þ ṁm
P ¼ 0 ð27Þ

Since Eq. (27) is expressed in the form of a diffusion

equation, DL can be assimilated to a water diffusion

coefficient. However, it should be emphasized that the

movement of liquid water considered in this section

arises by capillary suction. It is not, per se, a diffusive

phenomenon.

With the definition of DL given in Eq. (26), combined

with Eq. (24), the velocity of the liquid phase (Eq. (21)) can

now be written as:

vL
P ¼ � DLgradhL ð28Þ

2.3. Transport of water vapor

The treatment of the gas transport phenomenon is more

complicated because two phases have to be considered: air

and water vapor. However, the problem can be simplified by

considering the following assumptions. As mentioned in the

previous section, the development of Eq. (21) rests on the

hypothesis that pressure is uniform over the gaseous phase.

This implies that there is no bulk movement of air in the

gaseous phase. Consequently, there will be no convective

transport of water vapor within the material pore structure.

Still, there can be movement of molecules in the gaseous

phase as a result of their thermal agitation. The other

assumption is that gravity does not have any significant

effect on the behavior of the water vapor.

The continuity equation for water vapor component of a

gaseous phase is the following [15]:

BqV

Bt
þ div qVvVð Þ ¼ 0 ð29Þ

The quantity qV is the mass of water vapor per unit volume

of gaseous phase, and vV is the velocity of water vapor. The

water vapor will be in movement as a result of its thermal

agitation. It is therefore a diffusive process. According to

Daian [10], the water vapor flux is given as:

qVvV ¼ � DgradqV ð30Þ

where D is the self-diffusion coefficient of water vapor in

the gaseous phase. By combining Eqs. (29) and (30), one

gets:

BqV

Bt
� div DgradqVð Þ ¼ 0 ð31Þ

The bulk equation is calculated from the integration of

Eq. (31) over the REV:

1

Vo

Z
VG
o

�
BqV

Bt
� divðDgradqVÞ

�
dV ¼ 0 ð32Þ
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This integral can be divided in two parts, which yields:

1

Vo

Z
VG
o

BqV

Bt
dV � 1

Vo

Z
VG
o

div DgradqVð Þ dV ¼ 0 ð33Þ

According to the definition of the volumetric phase average

(Eq. (7)), Eq. (33) can be written as:

BqV

Bt

P

� divðDgradqVÞ
P

¼ 0 ð34Þ

The average of the time derivative is given by:

BðhGqV
PGÞ

Bt
¼ BqV

Bt

P

þ 1

Vo

Z
SGLo

qVudnGL dS

þ 1

Vo

Z
SGSo

qVudnGS dS ð35Þ

where So
GL is the surface of the liquid/gas interface, So

GS is

the surface of the gas/solid interface, u is the velocity of the

interface, nGL is a unit vector pointing outward the gaseous

phase at the liquid/gas interface, and nGS is a unit vector

pointing outward the gaseous phase at the gas/solid inter-

face. Because it is assumed that the deformations of the

solid matrix are negligible, the last integral on the right-hand

side of Eq. (35) can be neglected, which leaves:

BðhGqV
PGÞ

Bt
¼ BqV

Bt

P

þ 1

Vo

Z
SGLo

qVudnGLdS ð36Þ

The average of the divergence gives:

divðDgradqVÞ
P

¼ divðhGðDgradqV

PGÞÞ

þ 1

Vo

Z
SGSo

DgradqVdnGS dS

þ 1

Vo

Z
SGLo

DgradqVdnGL dS ð37Þ

The first integral on the right-hand side of Eq. (37) is

neglected because there is no exchange of water vapor

between the solid and the gaseous phases. Accordingly, Eq.

(37) can be simplified as:

divðDgradqVÞ
P

¼ divðhGðDgradqV

PGÞÞ

þ 1

Vo

Z
SGLo

DgradqVdnGL dS ð38Þ

Furthermore, by assuming that the coefficient D is constant,

Eq. (38) can be written as:

divðDgradqVÞ
P

¼ divðhGDgradqV

PGÞ

þ 1

Vo

Z
SGLo

DgradqVdnGL dS ð39Þ
The average of the gradient is given by [12,13]:

gradqV

PG ¼ sGgradqV
PG þ 1

Vo

Z
SGSo

x̊ðgradqVdnGSÞ dS

þ 1

Vo

Z
SGLo

x̊ gradqVdnGLÞdS ð40Þð

The quantity s is referred to by Bachmat and Bear [12] as

the tortuosity of the material. Conceptually, it is the ratio of

the macroscopic system length to the shortest path length

through the pore (liquid or gas) space. As such, it is a

quantity that strictly equal to or less than one. The parameter

x̊ is defined as x̊=x�xo, where x is a position vector within

the REV and xo is the position vector of the center of the

REV. The first integral on the right-hand side of Eq. (40)

involves the solid/gas interface. Except for the very low

water content conditions, there will be no direct contact

between these two phases because water will be adsorbed on

the surface of the solid. Accordingly, the integral can be

neglected. It is assumed that the term (gradqVd nGL) in the

second integral on the right-hand side of Eq. (40) varies

very slightly over the surface So
GL. Under this assumption, it

leaves an integral of a position vector times a scalar over a

closed surface, which gives zero. Eq. (40) is thus simplified

as:

gradqV

PG ¼ sGgradqV
PG ð41Þ

Replacing Eqs. (36), (39), and (41) into Eq. (34) gives:

BðhGqV
PGÞ
Bt

� divðhGDsGgradqV
PGÞ

þ 1

Vo

Z
SGLo

DgradqV � qVuÞdnGLdS ¼ 0 ð42Þð

Substituting Eq. (30) in Eq. (42), one finds:

BðhGqV
PGÞ
Bt

� divðhGDsGgradqV
PGÞ

� 1

Vo

Z
SGLo

qV vV � uÞdnGLdS ¼ 0 ð43Þð

Withaker [15] showed that the integral in Eq. (43) has the

same value as the one in Eq. (18). It represents the rate of

condensation per unit volume of the water vapor phase at

the liquid/gas interface. Therefore, Eq. (43) can be written

as:

BðhGqV
PGÞ
Bt

� divðhGDsGgradqV
PGÞ � ṁm

P ¼ 0 ð44Þ

It is possible to express the gradient in Eq. (44) as a

function of hL since qV=f(hL) [10]. Applying the chain rule,

it gives:

BðhGqV
PGÞ
Bt

� div

�
hGDsG

dqV
PG

dhL
gradhL

�
� ṁm

P ¼ 0 ð45Þ
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The quantities preceding the gradient within the parenthesis

can be lumped together to form a single vapor diffusion

coefficient:

DV ¼ hGDsG ð46Þ

Eq. (45) can be written succinctly:

BðhGqV
PGÞ

Bt
� div

�
DV

dqV
PG

dhL
gradhL

�
� ṁm

P ¼ 0 ð47Þ

2.4. Total moisture transport

In the previous sections, the transport equations for the

liquid and the vapor phases were considered separately

(Eqs. (27) and (47)). To get a complete description of the

transport, both equations should be added together:

B

Bt

�
qLhL þ hGqV

PGÞ

� div

��
qLDL þ

dqV
PG

dhL
DV

�
gradhL

�
¼ 0 ð48Þ

As the density of water vapor has a much lower value than

the one of liquid water qV
PGbqL

� �
and hGchL, Eq. (48)

can be simplified as:

qL

BhL
Bt

� div qLDL þ
dqV
PG

dhL
DV

!
gradhL

 !
¼ 0

 
ð49Þ

Let

Dh ¼
qLDL þ

dqV
PG

dhL
DV

qL

ð50Þ

Substituting Eq. (50) into (49) gives:

BhL
Bt

� div DhgradhLð Þ ¼ 0 ð51Þ

This is Richards’ equation. As can be seen, the equation

fully describes the movement of both vapor and liquid water

on the basis of a single variable hL. The influence of both

phases is taken into account through the function Dh, which

contains a term associated to the vapor transport and a

second one related to the transport of the liquid phase. The

demonstration also indicates that the variable h of the

original Eq. (4) stands for the volumetric liquid water

content, which is expressed in cubic meter of water per

cubic meter of material.

2.5. Determination of the moisture transport properties of

hydrated cement systems

The description of moisture transport mechanisms on the

basis of Eq. (51) requires the determination of the function

Dh. An interesting discussion of the variation of this

function with the water content of the material has recently
been published by Martys [19]. The author clearly

emphasizes the nonlinear character of this function.

Measurements made on a sand column [20] show that

when the humidity in the medium is higher than 4% (by

weight), the contribution of the vapor phase to the overall

moisture transfer is negligible. In that case, one can assume

that Dh=DL.

Over the years, numerous experimental techniques have

been used to determine the moisture transport properties of

hydrated cement systems. A thorough discussion of this

subject is beyond the scope of this paper. Comprehensive

critical reviews of this problem can be found in references

[21,22].
3. Ionic transport in unsaturated porous materials

Several mathematical models have been developed to

predict the movement of ions in cement-based materials.

Most of these approaches are single-ion models, considering

only chloride and its detrimental effect on the durability of

the material. Most of the time, such models consider the

transport of ions under the effect of diffusion and advection

(fluid flow). Also considered is the effect of the chemical

reactions involving the considered species, although in a

very simple way. For example, Saetta et al. [23], Nagesh and

Bhattacharjee [24], and Gospodinov et al. [25] published

such models.

However, these models oversimplify some basic physical

phenomena. For instance, the electrical coupling between

the ions [18] and its effect on their movements is often

overlooked. This is particularly true for cement-based

materials because they contain concentrated porous solu-

tion. The electrical coupling between the ions for concen-

trated solutions was recently put in evidence in two papers

by Snyder [26,27] that report on diffusion experiments

through nonreactive ceramic frits. Multiionic models taking

into account electrical coupling were recently published by

Masi et al. [28] and Truc et al. [29].

Unfortunately, as it was the case with Richards’ equation,

there is a lack of agreement with regard to the definition and

the use of some parameters in these models. For example,

the diffusion coefficient is sometimes called the intrinsic

diffusion coefficient, the apparent diffusion coefficient, or

the effective diffusion coefficient. Once again, the averaging

procedure is used to generate an ionic transport model. The

method will clarify some of the basic concepts behind the

modeling of ionic transport. Such a work was previously

published [4] but was applied only to nonreactive saturated

materials. The model presented in the following sections is

more general.

3.1. Transport of ions in the liquid phase

The transport model is based on the observation that the

transport of ions only occurs in the liquid phase. Hence, no
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equation has to be developed for the solid or gaseous phase.

The conservation equation for an ionic species i in the liquid

phase at pore scale is given by the following microscopic

equation [13]:

Bci

Bt
þ div jiÞ þ ri ¼ 0ð ð52Þ

The quantity ci is the concentration, ji is the ionic flux, and

ri is a source/sink term accounting for the homogeneous

chemical reactions [39] between ions in solution. The bulk

equation is obtained from averaging this equation over the

REV, following the procedure that lead to Eqs. (13) and

(34):

Bci
P

Bt
þ divð jiÞ
P þ ri

P ¼ 0 ð53Þ

The average of the time derivative leads to:

B hLci
�Lð Þ
Bt

¼ Bci
P

Bt
þ 1

Vo

Z
SLSo

ci udnLS dS

þ 1

Vo

Z
SLGo

ci udnLG dS ð54Þ

The first integral on the right-hand side of Eq. (54)

contains a term that accounts for the velocity of the solid/

liquid interface. While this interface may possibly move as

a result of some dissolution/precipitation chemical reac-

tions, it will do so very slowly. It can thus be neglected.

The other integral involves the movement of the liquid/gas

interface. It is similar to the first integral in Eq. (14). While

it was used in the mathematical development of the moisture

transport, it is assumed that it has only a small effect on the

ionic transport and can thus be neglected, simplifying Eq.

(54) to:

BðhLci�LÞ
Bt

¼ Bci
P

Bt
ð55Þ

The average of the divergence is given by:

div jið ÞP ¼ divðhL ji
PLÞ þ 1

Vo

Z
SLSo

jidnLS dS

þ 1

Vo

Z
SLGo

jidnLG dS ð56Þ

The last integral on the right-hand side of Eq. (56) accounts

for the ionic flux crossing the liquid/gaseous interface. The

value of this flux is zero because ions do not go into the

gaseous phase. The other integral, related to the flux of ions

across the solid/liquid interface, will be used to model the

various chemical reactions involving those phases. Accord-

ingly, Eq. (56) can be reduced to:

divðjiÞ
P ¼ divðhL ji

PLÞ þ 1

Vo

Z
SLSo

jidnLS dS ð57Þ
Substituting Eqs. (55) and (57) in Eq. (53) and averaging the

term ri
P

by hLri
PL

(see Eq. (9)), one finds:

B
�
hLci

PL
�

Bt
þ div

�
hL ji
PL
�
þ hLri

PL þ 1

Vo

Z
SLSo

jidnLS dS ¼ 0

ð58Þ

The next step consists of writing the proper flux

expression at the microscopic level (ions in bulk electrolyte)

and averaging it over the REV. Due to the charged nature of

ions, this expression has to consider the electrical coupling

between ionic particles. Furthermore, because the pore

solution of cement-based materials is highly concentrated,

it deviates from the ideal behavior of a dilute solution,

requiring consideration of the chemical activity. Finally, the

movement of the fluid itself will have an impact on the

movement of ions. All these physical phenomena can be

taken into account through the extended Nernst-Planck

model to which is added an advection term [18]:

ji ¼ � D
l
i gradci �

D
l
i ziF

RT
cigradw � D

l
i cigrad lnciÞ þ civLð

ð59Þ

The parameter Di
l is the self-diffusion coefficient [30] of

species i in diluted, free water conditions, ci is the chemical

activity coefficient, w is the electrical potential, zi is the

valence number of the ion, F is the Faraday constant, R is

the ideal gas constant, and T is the absolute temperature.

The terms on the right-hand side of Eq. (59) are associated

with diffusion, electrical coupling between the ions,

chemical activity effects, and water transport, respectively.

The integration of the flux over the REV, similar to the

procedure followed in Eqs. (9) and (11)–(13), leads to:

hL ji
PL ¼ � D

l
i hLgradci
PL � D

l
i ziF

RT
hLcigradw
PL

� D
l
i hLcigrad lncið Þ
PL

þ hLcivL
PL ð60Þ

The next steps consist in averaging the various gradients and

variables in Eq. (60).

The average of the concentration gradient is given by

[12,13]:

gradci
PL ¼ sLgradci

PL þ 1

Vo

Z
SLSo

x̊ðgradcidnLSÞdS

þ 1

Vo

Z
SLGo

x̊ðgradcidnLGÞdS ð61Þ

The quantity sL is the tortuosity of the aqueous phase. It is a

purely geometrical factor, accounting for the complexity of

the paths the ions must travel through in liquid space. It is a

function of the water content hL because it is related to the

volume of liquid in the pore space, and its value is less than

one [12]. The parameter x̊ was first encountered in Eq. (40).



Fig. 3. Concentration profiles of a 1–1 electrolyte near a charged surface

calculated with the Gouy–Chapman double-layer model. The calculations

were made with a surface potential of 25 mV. The Debye length n-1 is

indicated.
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To evaluate the surface integrals in Eq. (61), one has to

refer to the double-layer theory [31]. Fig. 2 shows the cross-

section of a pore and the schematic shape of the concen-

tration profile along its radius. The solid bears an electrical

surface charge rsolid. It is neutralized by charges of the

opposite sign in two different zones, the Stern and the

diffuse layers, bearing, respectively, rstern and rdiff charge

per unit area. The electrical balance respects the following

expression:

rsolid ¼ rstern þ rdiff ð62Þ

The external limit of the Stern layer, called the outer

Helmholtz plane or the shear plane, separates the solid from

the aqueous phase, in which ionic diffusion occur. The

aqueous phase is divided in the diffuse layer and the free

water zone, where ions do not feel the effect of the solid/

liquid interface. A recent study by Revil [32] showed that

ionic transport may occur in the Stern layer. But it was also

mentioned in the paper that this phenomenon is negligible

with respect to transport in the bulk pore when the pore

solution is highly concentrated, as it is the case in cement-

based materials. Consequently, only the ionic transport in

the aqueous phase is considered in this paper. Finally, the

description of the cross-section of the pore is complete by

considering a gaseous phase at the center of the pore, when

the latter is not saturated [33].

It is assumed that the concentration profiles at the liquid/

gas interface is flat (see Fig. 2). Consequently, the second

integral in Eq. (61) is negligible because there is no

concentration gradient along the radius at the liquid/gas

interface. The situation is different for the first integral

because of the concentration gradient along the radius at the

solid/liquid interface caused by the electric charge at the

surface of the solid. Simple double-layer calculations made

with the Gouy–Chapman model [31] are shown on Fig. 3.

They emphasize that increasing the ionic strength of a
Fig. 2. Concentration and potential profile across a pore near the solid/liquid interface according to the double-layer theory.
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solution in the vicinity of a charged surface decreases

dramatically the thickness of the double layer. Since

cementitious materials bear a highly charged solution, the

double layer extends over a very small region. Outside this

region, the concentration profile is unaffected by the surface

charge. Following this, the term
R
x̊(gradcid nLS)dS in Eq.

(61) is neglected, leaving:

gradci
PL ¼ sLgradci

PL ð63Þ

Then one needs to average the term in Eq. (60)

concerned with the electrical coupling between the ions.

According to the procedure for averaging a product [12,13],

one can write:

cigradw
PL ¼ ci

PL
gradw
PL þ c̊igrådw

PL ð64Þ

where the quantities topped by ˚, called deviations, are

defined as:

c̊i ¼ ci � ci
PL ð65Þ

It is assumed that the deviations lead to small terms, which

allows to neglect the deviation product in Eq. (64):

cigradw
PL ¼ ci

PL
gradw
PL ð66Þ

Following the same procedure as the one used for the

concentration gradient, the average of the potential gradient

gives:

gradw
PL ¼ sLgradw

PL þ 1

Vo

Z
SLSo

x̊
�
gradUd n

LS

�
dS

þ 1

Vo

Z
SLGo

x̊
�
gradUd n

LG

�
dS ð67Þ

Fig. 2 shows a potential profile across the section of a pore.

According to the double-layer models [31], it has a shape

similar to the concentration profile; that is, it is disturbed

near the solid/liquid interface but tends to a flat profile

toward the center of the pore. And like the concentration

profiles shown on Fig. 3, increasing the ionic strength of the

solution reduces the thickness of the area where the gradient

of potential is different from zero. Accordingly, the integrals

are neglected, assuming again that the electrical phenomena

near the interface do not affect ionic movement. Eq. (67)

thus simplifies to:

gradw
PL ¼ sLgradw

PL ð68Þ

Substituting Eq. (68) into (66) gives:

cigradw
PL ¼ ci

PLsLgradw
PL ð69Þ

The same approach is used to average the chemical

activity term in Eq. (60). The same assumptions concerning
the deviations, as well as those concerning the effect of the

electrical phenomena at the solid/liquid interface, lead to:

cigrad lncið ÞPL ¼ ci
PLsLgrad lnci

PL
� �

ð70Þ

It is assumed that the term lncI
PL

corresponds to the

chemical activity coefficients calculated with the average

concentrations ci
PL

. For simplicity, lnci
PL

is approximated by

ln ci
P L

:

cigrad lncið Þ
PL ¼ ci

PLsLgrad ln ci
P L
��

ð71Þ

Finally, the advection term in Eq. (60) is averaged as:

civ
PL ¼ ci

PL
v
PL þ c̊iv̊

PL ð72Þ

The term in Eq. (72) containing the deviations is called the

dispersive flux [13,34]. It is shown in the previous

references that it can be written under a Fickian form:

c̊iv̊
PL ¼ � Ddispgradci

PL ð73Þ

where Ddisp is called the coefficient of advective dispersion

and is due to fingering, not diffusion. Consequently, this

term can be added to the ionic diffusion term that would

then exhibit a new diffusion coefficient being the sum of the

classical one plus the coefficient of advective dispersion.

When the fluid is in movement under the effect of a water

content gradient, as described in the preceding section, the

velocity is relatively weak. In that case, the dispersion term

can be neglected [35], leading to:

civ
PL ¼ ci

PL
v
PL ð74Þ

Substituting Eqs. (63), (69), (71), and (74) in Eq. (60)

gives the average flux expression:

hL ji
PL ¼ � D

l
i hLsLgradci

PL � D
l
i ziF

RT
hLsLci

PL
gradw

PL

� D
l
i hLsLci

PL
grad

�
lnci

PL�þ hLci
PL

v
PL

ð75Þ

The diffusion coefficient at the macroscopic level Di is

defined as:

Di ¼ sLD
l
i ð76Þ

To simplify the expression, let:

Ciuci
PL ð77Þ

Wuw
PL ð78Þ

Substituting Eqs. (76) to (78) in Eq. (75) gives:

hL ji
PL ¼ � DihLgradCi �

DiziF

RT
hLCigradW

� DihLCigradðlnci
PLÞ þ hLCiv

PL ð79Þ
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Eq. (79) is now inserted in the averaged mass con-

servation Eq. (58) to yield the macroscopic ionic transport

equation:

B
�
hLCi

�
Bt

� div

 
DihLgradCi þ

DiziF

RT
hLCigradW

þ DihLCigrad
�
lnci

PL
�
� hLCiv

PL

!
þ hLri

PL

þ 1

Vo

Z
SLSo

jid nLSdS ¼ 0 ð80Þ

To simplify this equation, the integral must be expressed in a

manner that is more friendly to a further numerical analysis.

The term ( jid nLS) gives the amount of ions crossing the

solid/aqueous phase interface, as a result of dissolution/

precipitation or ion exchange reactions. It is possible to

express it differently by performing the averaging operation

on the ions in the solid phase [13]. The conservation equation

at the microscopic scale for the ions in solid phase is:

Bcis

Bt
þ div jisð Þ ¼ 0 ð81Þ

where the subscript s designates the solid phase. Contrary to

Eq. (52), it is assumed that no chemical reactions occur

within the solid phase because all precipitation/dissolution

phenomena are taking place at the solid/aqueous phase

interface. Averaging Eq. (81) over the REV leads to:

BðhsCisÞ
Bt

þ divðhs jis
PsÞ þ 1

Vo

Z
SSLo

jisd nSL dS ¼ 0 ð82Þ

where hs is the volumetric fraction of the solid phase and

nSL is an outward (to the S phase) unit vector on the solid/

aqueous phase interface (designated as SSL). The integral in

Eq. (82) has the same value as the one in Eq. (80) but with

an opposite sign because the ions coming out of the aqueous

phase are being bound by the solid phase. Furthermore, the

flux jis within the solid is zero because there is no ionic

movement in this phase. This allows one to write:

BðhsCisÞ
Bt

¼ � 1

Vo

�
Z
SSLo

jisd nSL dS ¼ 1

Vo

Z
SSLo

jisd nSL dS ð83Þ

Substituting Eq. (83) in Eq. (80) gives:

B
�
hLCi

�
Bt

� div

 
DihLgradCi þ

DiziF

RT
hLCigradW

þ DihLCigrad
�
lnci

PL�� hLCiv
PL

!

þ hLri
PL þ B hsCisð Þ

Bt
¼ 0 ð84Þ

This is the general expression for the ionic transport in

porous materials under isothermal conditions.
3.2. Coupling water and ionic transport

To model the transport of ions under the influence of

capillary suction, it would seem straightforward to substitute

Eq. (28) in Eq. (84). However, the development of the water

transport equations was made for the case of pure water in a

porous material. When ions are in solution, the vapor

pressure above a solution is lower than in pure water [36].

This effect is quantified through Raoult’s law. Accordingly,

the relationship pc
P ¼ f hLð Þ should instead be written as:

pc
P ¼ f hL; ciÞð ð85Þ

because the presence of ions in solution is likely to disturb the

equilibrium between the aqueous and gaseous phases in a

pore. To evaluate to what extent the presence of ions will

affect the vapor pressure of water, one can use Raoult’s law to

calculate the vapor pressure change between pure water and a

500 mmol/l NaCl solution with water as solvent. According

to Raoult’s law [36], the vapor pressure change is given as:

Dpv ¼ Xsolutep
o
v ð86Þ

where Xsolute is the molar fraction of solute (NaCl) in the

solution and pov is the vapor pressure of pure water. At 25 8C,
the vapor pressure of bulk water is 3.17 kPa [36]. Knowing

that in 1 l of water there are 56 mol:

Xsolute ¼
0:5 mol NaCl

0:5 mol NaClþ 56 mol water
¼ 0:009 ð87Þ

This gives a change in vapor pressure of Dpv=0.03 kPa,

which is obviously very weak. According to the result of this

simple calculation, the effect of ionic concentration on the

capillary pressure is neglected. It was also neglected in

previous models presented in Refs. [23–25,28].

Substituting Eq. (28) in Eq. (84) gives:

B
�
hLCi

�
Bt

� div

 
DihLgradCi þ

DiziF

RT
hLCigradW

þ DihLCigrad
�
lnci

PL�þ CiDLgradhL

!

þ hLri
PL þ B hsCisð Þ

Bt
¼ 0 ð88Þ

This equation can be used to model the transport of ions in

unsaturated cement-based materials when the pore fluid is in

movement because of capillary suction. To complete the

model, an equation must be considered to evaluate the

potential W, as well as an expression to calculate the

chemical activity coefficients. These topics are addressed in

the following sections.

3.3. Calculation of the potential

The electrical potential in Eq. (88) arises in the material

to enforce the electroneutrality condition. If two species are

diffusing in a material, with one of the species having a

greater self-diffusion coefficient, then in order to maintain a
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neutral solution, the potential created slows the fastest ions

and accelerates the slowest ones.

The mathematical relationship that relates electrical

potential to electrical charge in a given medium is given

by Poisson’s equation [18]

j2w þ q
E
¼ 0 ð89Þ

where q is the electrical charge density anda is the medium

permittivity. The charge density can be related to the ionic

concentration through:

q ¼ F
XN
i¼1

zici ð90Þ

where N is the number of ionic species. Substituting Eq.

(90) in (89) gives:

j2w þ F

E

XN
i¼1

zici ¼ 0 ð91Þ

It may seem awkward to have an equation from electro-

statics in a model where the ions are moving through time.

However, because the electromagnetic signal propagates

much more rapidly than the ions do, Poisson’s equation is

perfectly suitable.

To use Eq. (91) in the transport model, it has to be

averaged over the REV. As it was done previously, it is

assumed that the boundary effects at the liquid/solid and

liquid/gas interfaces are negligible. Following the same

average rules as in the previous sections, we get the

following relationship:

div hLsLgradWð Þ þ hL
F

E

XN
i¼1

ziCi ¼ 0 ð92Þ

3.4. Evaluation of chemical activity coefficients

The models to calculate the chemical activity coefficients

are numerous. The first ones developed are the Debye–

Hückel and extended Debye–Hückel models [37]. From

purely electrostatic considerations, they relate the chemical

activity coefficients of ionic species to the ionic strength of a

solution. They are valid for ionic strengths up to 10 and 100

mmol/l, respectively.

In cement-based materials, the ionic strength is much

higher. To suit this particular situation, a chemical activity

relationship was developed recently by Samson et al. [38],

which gives good results for highly concentrated solutions:

lnci ¼ � Az2i
ffiffi
I

p

1þ aiB
ffiffi
I

p þ ð0:2� 4:17� 10�5IÞAz2i Iffiffiffiffiffiffiffiffiffiffi
1000

p ð93Þ

where I is the ionic strength of the solution, and A and B are

temperature-dependent parameters. The parameter ai in Eq.

(93) varies with the ionic species considered.
3.5. Modeling of chemical reactions

Two terms appear in Eq. (84) to account for chemical

reactions. The term ri
PL

is a sink/source term that models

homogeneous chemical reactions [39], i.e., reactions that

solely involve the aqueous phase, as for instance:

Ca2þðaqÞ þ OH�
ðaqÞXCaOHþ

ðaqÞ ð94Þ

The other term related to chemical reactions is B(hsCis)/Bt.

As mentioned before, it accounts for ionic exchanges

between the aqueous and solid phases. This type of

chemical reaction is called heterogeneous [39]. It includes

dissolution/precipitation and surface exchange phenomen-

ons. The formation of portlandite is an example of

heterogeneous reaction:

Ca2þðaqÞþ2OH�
ðaqÞX CaðOHÞ2ðsÞ ð95Þ

In most cases, chemical reactions are modeled by

assuming that they are faster than ionic transport. A

dimensional analysis by Barbarulo et al. [40] showed that

this local equilibrium assumption (LEA) is valid in most

situations for ionic transport in cementitious materials.

Under LEA, chemical reactions are modeled by algebraic

mathematical relationships [39]. Following a paper pub-

lished in 1989 by Yeh and Tripathi [41], the current trend for

solving ionic transport problems in reactive materials is to

separate the transport and chemical reaction parts. The

partial differential equations describing ionic transport are

solved with the finite difference or finite element method,

whereas a Newton algorithm is used to solve the nonlinear

algebraic system of equation associated with the chemical

reactions. Depending on the type of chemical reactions

involved in a problem, different algorithms can be used to

split transport and chemistry, as reviewed in Refs. [42,43].

When the local equilibrium assumption is not valid,

chemical reactions are modeled with kinetic expressions

[39] involving reaction rate. This case arises for problems in

groundwater ionic transport where large pressure head

gradients can be at the origin of high fluid velocity.

Kinetically controlled reaction modeling is discussed in

Refs. [44–46].

3.6. Evaluation of the ionic transport properties

Two different transport parameters appear in Eq. (88).

There is the diffusion coefficient Di associated with the dif-

fusion process and the liquid water diffusivity DL to cha-

racterize the effect of the fluid velocity on the ionic transport.

A discussion of DL was already given in Section 2.5.

The diffusion coefficient is evaluated with the migration

experiment test. It consists in accelerating chloride ions with

an applied external potential through a disk of cement-based

materials glued between two cells filled with ionic solutions.

The analysis of the results yields the diffusion coefficients.

Different analysis methods are found in the literature. One is
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based on steady-state measurements of chloride having

crossed the sample [47,48]. Another [49] is based on

measuring non-steady-state chloride profiles by grinding the

sample after a short exposure. A recent paper by Samson et

al. [50] describes a method based on current measurements

during the migration test. The measurements are analyzed

with the extended Nernst-Planck model to yield the

diffusion coefficient of each ionic species in the material.

All these methods are performed in saturated condi-

tions. As shown in Eq. (76), the diffusion coefficient Di

depends, through sL, on the saturation condition. No

method could be found in the literature to evaluate this

parameter for unsaturated conditions. However, it is

possible that Di might not be affected by the saturation

state of the material above a given saturation level, the latter

being defined as s=hL//, where / is the porosity. Revil [32]

showed that for shaly sand, the diffusion of the ions is

almost unaffected for a water saturation above 0.6. We thus

infer that for concrete structures exposed to high relative

humidity environment, the diffusion coefficient is inde-

pendent of the water content.

In the flux Eq. (75), the recurring quantity sLhL, which

could also be written sLs/, is analogous to a saturation-

dependent formation factor for the liquid phase of the pore

system. The saturation s results from the averaging over the

REV. The tortuosity sL is also a function of the saturation

and reflects the connectedness of the moisture phase. At a

critical moisture content sc, the liquid phase is no longer

connected, the tortuosity sL goes to zero, and the transport

within the liquid phase ceases.

The remaining question is the dependence of the

tortuosity sL on the saturation. Although no precise data

exist for cementitious systems, there exist qualitative data

from which inferences can be made. These data typically

express the relative total conduction as a function of the

saturation s. The relative total conduction r/ro is analogous

to the product of the saturation and the relative tortuosity:

r sð Þ
r s ¼ 1ð Þ ¼ ssL sð Þ

sL s ¼ 1ð Þ ¼ ssL
sLo

ð96Þ

Therefore, dividing these results by s will yield the relative

change in the tortuosity.

The work of Martys [19] suggests that, for a preferen-

tially wetting liquid being displaced by a nonwetting one,

the limiting behavior of sL near saturation can be

approximated by the dilute effective medium theory result:

ssL
sLo

¼ 1� 3

2
1� sð Þ þ 1

2
1� sð Þ2 sY1 ð97Þ

(Here, the more exact coefficient of 0.558 for the quadratic

term has been roughly approximated by 1/2.) The relative

tortuosity can be solved for algebraically:

sL
sLo

¼ s

2
þ 1

2
ð98Þ
Therefore, a decrease to 80% saturation will result in a 10%

change in the tortuosity. Given that transport coefficients

can routinely change by orders of magnitude, a 10% change

in the tortuosity is relatively quite minor. Because this result

is only approximate near saturation, further reductions in

saturation would have a far greater effect.
4. Conclusion

The mathematical model developed in this paper is first

summarized. For materials where the water transport occurs

as a result of capillary suction, the water content profile can

be calculated with Richards’ Eq. (51). The ions will move in

the material under the combined effect of diffusion

(including electrical and activity effects) and water move-

ment according to Eq. (88). The electrical potential, arising

from the electrical coupling between the ions to maintain a

neutral solution, is calculated with Poisson’s Eq. (92). The

chemical activity coefficients, for the highly charged pore

solution of cement-based materials, can be evaluated with

Eq. (93). Finally, several references were given to address

the modeling of chemical reactions occurring in cementi-

tious materials.

The use of the averaging technique clearly helps to

clarify the meaning of some important parameters in the

model. According to this technique, the water content in

Richards’ model corresponds to a volumetric water content.

The water diffusivity was clearly shown to be a contribution

of both liquid water and vapor transport. The diffusion

coefficient, the parameter that characterize the ionic

diffusion process, is directly related to the geometrical

properties of the material through a parameter called the

tortuosity.

The averaging technique proved to be a powerful

mathematical tool to lay the foundation of transport models

in porous media.
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