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Thermoplastic Materials in Fire



Microscopic Photographs of PMMA

Kashiwagi and Ohlemiller, 19th Intl. Symp. on Comb., pp. 815-823 (1982)



Numerical Model

• 1-D Finite element model 
– Mass balance for gas and polymer
– Energy balance

• Individual bubble dynamics
– In 3-D
– Sizes and locations of bubbles 

determine amount of gas in each 
element

– Motion of bubbles determine velocities



Continuity Equations

• Polymer
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Energy Equation

RTE
ppvp BeH

z
Tk

zz
TW

t
Tc /***)( −−








∂
∂

∂
∂=








∂
∂+

∂
∂ φρρ

kp
k

kkp cc ∑= φρρ *)(where

∑
∑=

kk

kkk W
W

φρ
φρ*

gp
gp kkk φφ )()(* =



Bubble Model

• Nucleation
• Bubble growth
• Migration
• Coalescence
• Bursting



Bubble Nucleation

• Homogeneous vs. heterogeneous nucleation

• Arrhenius function for nucleation rate J

• Elasticity
• Gas diffusivity through melt

• Rate easily varies by 9+ orders of magnitude!
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Secondary Nucleation

1 m

5 m

Yarin et al., AIChE J. 45:2590-2605 (1999)



Bubble Growth

• Models
– Infinite domain;  finite radius
– Temperature gradients – radial
– Dominant mechanism depends on size

• Surface tension, inertia, evaporation
– Diffusion-driven:
– Polymer melt:  between Newtonian fluid and diffusion-

driven growth
• Secondary nucleation

– In strongly viscoelastic liquids
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Bubble Migration

• Driven by gravity, temperature gradients 
(surface tension, viscosity dependence on T)

• Wake effects
• Bubbles slow as approach surface
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Approach to Interface

Chi and Leal, J. Fluid Mech. 201:123-146 (1989)



Bubble Velocity Nearing Interface

Distance from interface
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Chi and Leal, J. Fluid Mech. 201:123-146 (1989)



Coalescence and Bursting

• Stages:
– Approach
– Drainage of thin film
– Rupture by surface instability - rapid

• Strongly dependent on presence of surfactants
– Clean interface:  ~ 1 ms
– Surfactant:  ~100 s

• Vaporization due to heating not considered



Thin-film Drainage



Bursting

• Gases released by sample
– Determines the mass loss rate
– Heat release rate of fire

• Long-lasting bubbles may form insulating 
layer



Bubble Model
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Numerical Model



Effects of Bursting Delay in PP

0.01 secDrainage time = 0 sec



Effect of Bursting Delay on
Sample Thickness vs. Time

0.01 s

0 s

Drainage times = 0, 0.01 seconds



Temperature vs Time for
Sample Surfaces

Drainage times = 0 (orange), 0.01 (green) seconds



Nucleation Model



PP vs.         PMMA



Other Bubble Effects

• Radiation
– Internal transmission
– Scattering

• Oxygen entrainment
• Distortion of surface geometry



Conclusions

• Bubbling behavior in thermoplastic materials 
exposed to fire is highly complex
– First principle modeling has a long way to go

• Because of insulating layer and direct impact on 
mass loss rate, bubble behavior at surface is critical
– Bursting, coalescence, nucleation, approach to interface
– Need to include radiation effects
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