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A miniature-cavity realization of the cavity ring-down concept, which permits extension of the
technique to spectroscopy of surfaces, thin films, liquids, and, potentially, solids, is explored
using a wave-optics model. The novel spectrometer design incorporates a monolithic,
total-internal-reflection-ring cavity of regular polygonal geometry with at least one convex facet to
induce stability. Evanescent waves generated by total-internal reflection probe absorption by matter
in the vicinity of the cavity. Optical radiation enters or exits the resonator by photon tunneling,
which permits precise control of input and output coupling. The broadband nature of total-internal
reflection circumvents the narrow bandwidth restriction imposed by dielectric mirrors in
conventional gas-phase cavity ring-down spectroscopy. Following a general discussion of design
criteria, calculations are presented for square and octagonal cavity geometries that quantify intrinsic
losses and reveal an optimal cavity size for each geometry. Calculated absorption spectra for the
NO3 radical from 450 to 750 nm in a nitric acid solution are presented to demonstrate bandwidth and
sensitivity. �S0034-6748�97�03808-2�

I. INTRODUCTION

Cavity ring-down spectroscopy1–6 �CRDS� has been
demonstrated as a technique for the measurement of optical
absorption that excels in the low-absorbance regime where
conventional methods have inadequate sensitivity. CRDS
utilizes the mean lifetime of photons in a high-finesse optical
cavity as the absorption-sensitive observable. Typically, the
cavity is formed from a pair of nominally equivalent, narrow
band, ultrahigh reflectivity dielectric mirrors, configured ap-
propriately to form a stable optical resonator. A laser pulse is
injected into the cavity through a cavity mirror to experience
a mean lifetime given by,5
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where tr is the photon round-trip transit time for a cavity of
length L , 	 i , and Ni are the absorption cross section and
number density of species i , respectively, and �ln R(�)� ac-
counts for intrinsic cavity losses arising largely from the
frequency-dependent mirror reflectivities when diffraction
losses are negligible. The determination of optical absorption
is, thereby, transformed from the conventional power-ratio
measurement to a measurement of time. The ultimate sensi-
tivity of CRDS is determined by the magnitude of the intrin-
sic cavity losses, which can be minimized with techniques
such as superpolishing7 that permit the fabrication of ultra-
low-loss optics. Although CRDS has provided a rich variety
of gas-phase spectroscopic8–13 and kinetic14–18 information,
the method has not yet been extended to spectroscopy of the
condensed state.19 Extension of CRDS to condensed matter
requires an innovative cavity design that circumvents the
narrow bandwidth restriction of conventional CRDS, dielec-

tric mirrors, while providing a low intrinsic cavity loss and a
well-defined relationship between photon decay time and ab-
sorption.

In the following, a novel implementation of the cavity
ring-down concept is investigated that utilizes the unique
properties of total-internal reflection �TIR� to achieve a
miniature-cavity realization of CRDS, which is applicable to
condensed phase spectroscopy. Recently, small high-finesse
cavities have attracted considerable attention in connection
with microlasers,20,21 harmonic conversion devices,22,23
lasing,24 fluorescence,25 and spontaneous emission26 in mi-
crodroplets, as well as a variety of other optical
phenomena.27–31 In many cases, high finesse is achieved by
sustaining the cavity modes within a monolithic TIR ring,
which eliminates Fresnel reflections associated with intrac-
avity interfaces and facilitates miniaturization. The efficiency
of TIR is diminished from unity only by surface scattering
when nonspecular loss mechanisms32 can be neglected. An-
other natural consequence of TIR is the generation of eva-
nescent waves, which are required to satisfy the boundary
conditions on Maxwell’s equations for light incident from a
denser medium at an angle that exceeds the critical angle.
The utility of evanescent waves in spectroscopy, especially
for surface, thin-film and liquid-phase spectroscopic studies,
is well established.33 In the low-absorption limit, the energy
loss per reflection due to absorption by matter located within
the decay length of the evanescent wave, is linear in the
number density.34 The presence of evanescent waves also
permits the precise control of resonator input and output cou-
pling through photon tunneling,22,23,35 which is commonly
termed frustrated total reflection �FTR�. Furthermore, the
broadband nature of TIR supplants the bandwidth restriction
that is characteristic of the multilayer, dielectric mirrors of
conventional CRDS, thereby permitting broad spectral re-
gions to be probed with a single device.

In this investigation, design criteria for a CRD spectrom-
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eter that utilizes a monolithic TIR-ring cavity, as depicted in
Fig. 1 for a hexagonal cavity, are elucidated and supported
by a wave-optics model. Since each cavity design requires a
custom optical fabrication, a theoretical analysis is appropri-
ate to examine sources of intrinsic loss and the competition
between intrinsic losses, which is somewhat unique to the
TIR-ring cavity. In this initial investigation, the calculations
are focused primarily on designs that can be realized by com-
mon optical fabrication methods, although alternative strate-
gies, such as molecular beam epitaxy may be feasible.21
Square and octagonal cavity geometries are considered,
which permit thin films and bulk liquids to be probed in the
visible, respectively, as discussed below. Schiller et al.35
have characterized a square, fused-silica TIR-ring cavity un-
der cw excitation conditions, which possessed a moderate

finesse of �5100. As these authors pointed out, the fabrica-
tion of a much higher finesse cavity should be feasible by
selecting a higher grade of material and superpolishing the
facets. The octagonal resonator offers a greater fabrication
challenge, but should be feasible with existing technology.
The combination of evanescent wave absorption with CRDS
detection has recently been achieved in our laboratory
through the use of a superpolished, fused-silica Pellin–Broca
prism in a conventional CRDS cavity.36 Despite moderately
large polarization-dependent losses for this narrow-
bandwidth cavity, submonolayer detection of I2 at 625 nm
was achieved. These results, together with theoretical pre-
dictions discussed below suggest that the TIR-ring cavity
implementation of CRDS will provide a powerful new spec-
troscopic tool, which is especially well suited to surface
and thin-film diagnostics. This paper contains three sections:
�I� a general discussion of the relevant features of a poly-
gonal TIR-ring resonator for CRDS, �II� a brief description
of the theoretical model, and �III� quantitative results includ-
ing intrinsic losses, determination of the optimal cavity size,
and a calculated spectrum to demonstrate bandwidth and
sensitivity.

II. GENERAL CONSIDERATIONS

A. Photon decay time

Zalicki and Zare2 have shown that the minimum detect-
able absorbance change in conventional CRDS can be ex-
pressed as the product of the intrinsic cavity loss and the
minimum detectable relative change in the photon decay
time. For a monolithic, TIR-ring resonator, the cavity design
that will yield maximum sensitivity arises from an interplay
between the factors that optimize a conventional CRDS ex-
periment and the factors that influence the magnitude of eva-
nescent wave absorption. However, the round-trip time for a
monolithic cavity is linked to bulk attenuation through the
round-trip path length. Therefore, the resonator design that
minimizes intrinsic loss, while providing a sufficiently long
decay time to achieve maximum digitization accuracy, will
be optimal for a given absorption loss.

In addition to bulk attenuation, other sources of loss,
which can potentially reduce the mean photon lifetime, in-
clude surface scattering, diffraction, input and output cou-
pling, and nonspecular effects. By analogy with Eq. �1�, the
photon decay time in a monolithic, TIR-ring cavity with n
facets is given by
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where the total intrinsic cavity loss has been approximated
by the sum of the individual round-trip losses, L i , and de is
the effective sampling depth for the evanescent wave. In Eq.
�2�, two TIR surfaces are assumed to serve as coupling ports
while the remaining n-2 surfaces sample the surrounding
medium. For an n-sided ring resonator of refractive index
ni , the round-trip time is simply

tr�niL rt /c�2n�ni /c �r0 sin�
/n �, �3�

where r0 is the inscribed-circle radius of the associated poly-
gon and L rt is the round-trip physical path length, which
approaches 2
r0 in the limit as n→� . The dependence of
the photon decay time on the size of the cavity is incorpo-
rated directly in tr and Lbulk , while Ldiff depends on cavity

FIG. 1. A polygonal, TIR-ring resonator enables extension of the cavity
ring-down concept to condensed matter spectroscopy. A light pulse is totally
reflected by prism A, creating an evanescent wave, which excites the stable
modes of the resonator B through photon tunneling. The absorption spec-
trum of matter located at the totally reflecting surfaces �a�–�d� is obtained
from the mean lifetime of a photon in the monolithic cavity, which is ex-
tracted from the time dependence of the signal detected at D by out coupling
with prism C.
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size through the stability factors and the presence of aper-
tures associated with the finite facet dimensions. For a reso-
nator that is fabricated from a highly transparent material,
the loss per pass due to bulk attenuation is approximated
well by

Lbulk�2�r0n sin�
/n �, �4�

where � is the bulk attenuation coefficient. Note that as the
size of the resonator is increased, such that bulk attenuation
dominates, the photon decay time asymptotically approaches
a constant value. An increase in cavity size beyond the point
at which a sufficiently long decay time is obtained for accu-
rate digitization, will only increase the minimum detectable
absorbance change �decrease sensitivity�. Clearly, an in-
crease in cavity medium transmission will permit a lower
detection limit to be achieved. In the visible and near-IR,
fiber-optic-grade fused-silica and certain borosilicate glasses
have an attenuation of 20 dB/km (46 ppm cm�1) or less.37
Several other materials have the potential to provide ex-
tremely high transmission in other spectral regions with the
residual attenuation typically limited by multiphonon pro-
cesses, defects, impurities, and phonon-assisted electronic
transitions.38

When bulk attenuation is sufficiently small ��500 ppm/
pass�, surface scattering losses can become significant. Using
scalar diffraction theory, the reduction in the mean specu-
larly reflected intensity per round trip can be estimated
from39–41

Lsurf�� 4
ni	RMS�n cos � i
�0

� 2
�� 4
ni	RMS�n sin�
/n �

�0
� 2, �5�

where 	RMS is the root-mean-square surface roughness, �0 is
the vacuum wavelength, and the angle of incidence, � i
�
(n�2)/2n , has been generalized for an n-sided polygo-
nal resonator. Current optical polishing techniques and sur-
face metrology allow ultrasmooth surfaces with 	RMS
�0.05 nm to be fabricated routinely.7 According to Eq. �5�,
scattering losses are thereby reduced to below 5 ppm per
round trip at 600 nm for a square, fused-silica resonator with
� i�45°. The strong incident-angle dependence in Eq. �5�
also results in a reduction of the round-trip surface scattering
loss for resonators with larger values of n , corresponding to
larger angles of incidence, despite the increased number of
total reflections. However, as will be shown, the reduction in
surface scattering loss with increasing angle of incidence is
counteracted by an increase in diffraction losses arising from
apertures.

B. Resonator stability

The stability of ring resonators has been investigated
previously.42–45 By definition, a stable resonator supports
one or more low-diffraction-loss modes, which are self-
reproducing after one round-trip pass through the
resonator.46,47 Within the paraxial approximation, the stabil-
ity conditions for an arbitrary n-element resonator can be

obtained by first multiplying in sequence the ABCD matri-
ces, Mi , associated with each element of the resonator to
obtain the overall matrix for one round trip,48 or

M rt�M 1M 2M 3•••Mn�� AC B
D � . �6�

From the self-consistency requirement, the condition for sta-
bility of the resonator is obtained as a constraint on the trace
of the round-trip matrix, given by

�A�D
2 ��1. �7�

For many-element resonators, the stability condition can be-
come a complicated function of system parameters, but in
general it can be expressed in terms of nondimensional ratios
of radii of curvature to relevant separations. As in the case of
a plane–parallel, linear resonator, a polygonal ring resonator
consisting of n plane–parallel mirrors, satisfies the upper
limit of Eq. �7�, resulting in borderline instability with con-
comitant large diffraction losses since no refocusing occurs.
However, the presence of a single convex facet induces sta-
bility, thereby substantially diminishing diffraction losses, as
demonstrated by Schiller et al.35 for a monolithic cavity. If
the convex facet has a spherical radius, the effective focal
lengths in the tangential and sagittal planes are then differ-
ent, resulting in astigmatism. Two stability conditions must
then be specified by the pair (X ,Y ), where �X��1 and �Y �
�1, in accordance with Eq. �7� for the tangential and sagittal
planes, respectively.

C. Frequency selectivity

The transverse field distribution in a stable, astigmatic
resonator is described to high accuracy by a modal decom-
position in terms of the Hermite–Gauss functions.48 A single
transverse mode can be expressed as a product of two
Hermite–Gauss functions that possess different orders and
waist sizes in the tangential and sagittal planes. For a given
system aperture size, diffraction losses are generally larger
for higher-order transverse modes. The role of cavity trans-
verse and longitudinal mode structure in CRDS has been
discussed.2,3,4,49 The effect can be significant, since the dis-
crete mode spectrum can result in loss of spectral informa-
tion if an absorption line is located between mode frequen-
cies or can cause inefficient coupling if the bandwidth of the
pulsed excitation source is narrow compared to the mode
spacing. The polarization-dependent mode frequencies
�q ,m ,k for an n-sided monolithic, TIR-ring cavity are given
by22

�q ,m ,k
s ,p �

c
niL rt

�2
q��x
k��y

m��
j�1

n

�s ,p
� j � � , �8�

where �x and �y are the transverse mode-dependent Guoy
phase shifts,48 and the � ( j) are the polarization-dependent
TIR phase shifts.35 Although the broad absorption lines typi-
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cally associated with condensed matter spectroscopy reduce
the chances that spectral information will be lost, the large
free-spectral range implied by Eq. �8� for small cavities
could result in inefficient coupling if �10 ns pulse width
excitation sources, which are common in CRDS, are applied
in a minicavity experiment. The ideal temporal width will be
0.1–1 ns, based on an optimized cavity size �vide infra�,
which maintains the ratio of the source linewidth to the lon-
gitudinal mode spacing.4

To circumvent the complications associated with a large
free-spectral range, Meijer et al.50 used a nondegenerate cav-
ity with intentional mode mismatching to excite a quasicon-
tinuum of transverse modes within the longitudinal mode
free-spectral range of a conventional linear cavity. Mode
mismatching may be an important strategy in minicavity
CRDS to assure efficient coupling when relatively narrow-
band sources are used. This strategy determines the mini-
mum useful cavity size, since the excited high-order modes
must experience essentially the same photon decay time as
the fundamental mode. Therefore, the resonator apertures
must be large enough to render diffraction losses negligible
for the highest-order mode with significant intensity. As the
number of facets is increased, the facet size is decreased for
a given L rt , thereby further restricting the minimum useful
cavity size. Alternatively, mode matching could have ben-
efits such as providing a well-characterized probe field or a
narrow bandwidth for high-resolution spectroscopy3 in addi-
tion to a reduced diffraction loss for a given cavity size.
Efficient mode matching to the lowest-order astigmatic
modes of square and trigonal ring resonators has been
achieved.22 In comparison to linear resonators of conven-
tional CRDS, the inherent mechanical stability of monolithic
devices simplifies precise mode matching, since the reso-
nance frequency can be scanned thermally or electro-
optically.

D. Input–output coupling

In contrast to linear resonators of conventional CRDS,
direct coupling of a free-space wave to the stable modes of a
monolithic resonator cannot generally be achieved when the
modes are sustained entirely by TIR. Spherical resonators,
which support high-Q whispering gallery modes,51 provide
an exception. However, these non-Gaussian modes are diffi-
cult to mode match selectively.31,41 CRDS requires the exci-
tation of a consistent set of transverse modes to provide con-
sistent sampling of an absorption spectrum. As shown
schematically in Fig. 1, the modes of a TIR-ring resonator
can be excited by photon tunneling22 when totally reflecting
prisms are placed in close proximity to the resonator such
that the evanescent field is phase matched to the resonator
modes. Although the presence of any radiative channel in-
herently degrades finesse, a key advantage of using photon
tunneling for input and output coupling is the ability to con-
trol the extent of coupling through precise positioning of the
coupling element with respect to the resonator. The use of
separate facets for input and output eliminates the need for
temporal separation of the high-energy reflected input pulse
from the weak photon decay signal.

As discussed by Schiller et al.,35 TIR-ring cavity trans-
mission involves two tunneling processes that are resonance
enhanced, thereby resulting in a gap-width-dependent cou-
pling, finesse, and resonance frequency. Depending on the
cavity geometry, the indices of refraction, the wavelength,
and the total round-trip loss, a gap width will exist for which
the coupling loss equals the total round-trip intrinsic loss of
the resonator leading to impedance-matched coupling. For
smaller gap widths, over coupling results with a concomitant
degradation of finesse, while for larger gap widths, coupling
efficiency plateaus as the uncoupled finesse limit is ap-
proached. Under impedance-matched conditions, the cou-
pling efficiency is unity on resonance and the finesse is equal
to one-half its maximum value. In applying a TIR-ring cavity
for CRDS, operation in the weak-coupling regime is pre-
ferred to obtain maximum finesse. Although light throughput
is reduced in this limit, signal levels can be enhanced
through multiple mode excitation or mode-matched cw
excitation.52–54 Typically, in CRDS measurements, high
signal-to-noise ratios are obtained, even when extremely
high-finesse cavities and single mode excitation are
employed.55

E. Nonspecular effects

In addition to bulk attenuation, surface scattering, dif-
fractive, and coupling losses, a transmission loss can result
from nonspecular reflection,32 which arises when a finite di-
ameter beam undergoes total reflection in the vicinity of the
critical angle. An intuitive interpretation of nonspecular phe-
nomena is obtained by considering the beam in terms of its
angular spectrum of plane waves.56 A finite beam diameter
implies a distribution of wave vectors in the angular spec-
trum, with an inverse proportionality between beam diameter
and spectral width. Since the Fresnel reflection coefficients
are derived strictly for an infinite plane wave, the reflection
of a finite beam cannot be expressed by a single Fresnel
reflection coefficient. Instead, each component in the angular
spectrum experiences a different phase and amplitude modi-
fication, resulting in nonspecular phenomena. A variety of
aberrations arise from nonspecular reflection, including the
well-known Goos–Hanchen lateral beam shift,57 in which
the apparent surface of geometric reflection is displaced nor-
mally to the interface. In a photon tunneling geometry, the
Goos–Hanchen shift has been shown to occur equally for the
reflected and transmitted beams.58 The specific case of non-
specular reflection of Gaussian beams has been examined in
detail59 with a recent three-dimensional treatment proposing
a complete description based on 20 independent effects.60

For a TIR-ring cavity implementation of CRDS, the po-
tential for introduction of an additional intrinsic cavity loss is
worth examining. Schiller41 calculated the transmission loss
exactly for a Gaussian beam incident near the critical angle
for a fused silica/vacuum interface. The loss was well ap-
proximated by the expansion,

T�
exp���2�

�2��

� 1�

1
2�2

�••• � , �9�
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where ��(2
ni /�0)�x sin(�c��i)/&. For an angle of inci-
dence that exceeds the critical angle, �c , by at least 1°, a loss
of below 1 ppm is found for a beam waist of �x � 20 �m at
600 nm, suggesting that nonspecular transmission loss will
be small relative to other sources of loss.

F. Evanescent wave absorption

The extent of evanescent wave absorption by a film of
given thickness and absorptivity is a function of the angle of
incidence and the index discontinuity at the totally reflecting
surface, which determine the amplitude and penetration
depth of the evanescent field.33 In attenuated total reflectance
�ATR� spectroscopy, this dependence is incorporated in the
effective sampling depth,34 which corresponds to the equiva-
lent thickness required to obtain the same spectral contrast
from a transmission experiment. As the angle of incidence
approaches the critical angle or as the index discontinuity is
reduced, the effective sampling depth increases, thereby aug-
menting sensitivity through an increase in path length as well
as an enhancement of the local electric field. Although a
general solution for TIR from stratified media can be
found,61 simple expressions for the effective sampling depth
can be obtained immediately in the weak absorption limit for
bulk materials or films that are thin relative to the evanescent
wave decay length. For a thin film, direct comparison to a
transmission spectrum is possible. For bulk materials, a lin-
ear dependence of the effective sampling depth on wave-
length results in band distortion due to enhanced sensitivity
at longer wavelengths. The effective sampling depth pro-
vides an established and simple relationship between the ab-
sorption loss per pass in a resonator and the mean photon
lifetime as well as a well-defined path length for quantitative
spectroscopy.

For TIR-ring resonators, stable modes are sustained
when the angle of incidence for the chief ray �or beam cen-
ter�, given by � i�
(n�2)/2n , exceeds the critical angle,
�c�sin�1(n0 /ni). Therefore, a discrete set of allowed angles
of incidence exists for a given index discontinuity. The inci-
dent angle that is closest to the critical angle will provide
maximum sensitivity and the smallest value of n . Since TIR
is not frustrated by films that are thin relative to the evanes-
cent wave decay length regardless of the film refractive in-
dex, the simplest resonator design that supports stable modes
in vacuum can be used for thin-film diagnostics. For bulk
materials, the optimum resonator geometry will depend on
the index discontinuity. The value of n must be selected to
prevent frustrating the total reflection or incurring losses due
to nonspecular effects as � i approaches �c . When n is in-
creased to compensate for a decreasing index discontinuity,
detection sensitivity is enhanced due to the larger number of
total reflections, although the resulting resonator may present
a greater fabrication challenge.

III. THEORETICAL MODEL

To quantitatively evaluate performance and to search for
an optimum resonator design, a general polygonal-ring-
resonator model was developed. Since diffraction losses ac-
count for a significant fraction of the total system loss as the
resonator size is decreased to reduce bulk attenuation, a

wave-optics formalism within the scalar Fresnel approxima-
tion was employed. A global coordinate system was used to
specify the beam front and TIR facet positions. Beam trans-
verse profiles were represented by two 512�512 complex
arrays, corresponding to the orthogonal polarization compo-
nents. Photon tunneling was integrated into the model by
following the development of Court and Von Willisen,62
which excludes nonspecular effects. Beam propagation was
computed by applying Fourier transform methods to Huy-
gens’ integral, as discussed below. Calculations were imple-
mented using the General Laser Analysis and Design code
�Applied Optics Research, Pittsford, N.Y.� on a Cray 90.63
Several subtleties associated with the use of scalar Fresnel
theory for quantitative evaluation of diffraction effects in op-
tical resonators are discussed below.

Huygens’ integral expresses the intuitive notion that a
wave front at one position along the optic axis can be con-
structed from knowledge of the wave front at a different
position by treating each point on the initial wave front as a
spherical wave source. For propagation along the z axis from
the plane z�z1 , Huygens’ integral is given by

E�x2 ,y2 ,z2��i
ni
�0

� �
S1
E�x1 ,y1 ,z1�

�
exp
�r� � i �2
ni

�0
�r� � cos �dx1dy1 , �10�

where S1(x1 ,y1 ,z1) corresponds to the initial wave-front
surface and � is the angle between the normal to the wave
front at a source point and the vector r�(x2�x1)i�(y2
�y1)j�(z2�z1)k, which connects the source point to a
point on the final wave front. By expanding the radical ex-
pression arising from �r� to second order in the exponent and
first order in the denominator and setting the cos ��1, Huy-
gens’ integral within the Fresnel approximation is obtained,
which is given by

E�x2 ,y2 ,z2��
ini exp��2
ini�z2�z1�/�0�

�0�z2�z1�

�� �
S1
E�x1,y1 ,z1�

�exp� i �
ni
�0

�x2�x1�2��y2�y1�2

�z2�z1�
�

�dx1 dy1 . �11�

Using the convolution theorem, Eq. �11� can be computed
according to48,56

E�x2 ,y2 ,z2��
exp� i
ni�r2�2/��z2�z1��

i��z2�z1�

�F �E�x1 ,y1 ,z1�exp� i 
ni�r1�2

��z2�z1�
� � ,

�12�
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where �ri�2 � xi
2 � yi

2 � zi
2 andF � � implies Fourier transfor-

mation. This approach to computing propagation is equiva-
lent to the more intuitive angular spectrum decomposition
method. As discussed in standard texts,48,56 the angular spec-
trum method proceeds by Fourier transformation of the field
distribution, propagation of the resulting plane-wave compo-
nents, followed by inverse transformation, according to

E�x2 ,y2 ,z2��F �1†exp��i�0k0
2�z2�z1�/4
ni�

�F �E�x1 ,y1 ,z1��‡, �13�

with k0
2�kx

2�ky
2, where the ki correspond to spatial frequen-

cies in the x and y directions, which are associated with a
particular plane-wave component. However, in the discrete
domain the quadratic phase factors in Eqs. �12� and �13� can
give rise to aliasing errors if the same algorithm is used for
computing both near- and far-field propagation. Therefore,
Eq. �12� is used for far-field propagation since the quadratic
phase factor varies slowly as z�z0→� and rapidly as z
�z0→0, while Eq. �13� is used for near-field propagation.
Consistent selection of the beam propagation algorithm is
especially important in modeling resonators, since the self-
consistency condition will not be satisfied if the algorithms
are applied inconsistently over a round trip for a system with
internal foci. To guarantee consistent algorithm selection, a
‘‘surrogate’’ Gaussian beam is used,63 which is the best-fit
Gaussian beam to the distribution. The surrogate Gaussian
beam serves only in algorithm selection, which is based on
the position of the actual beam front relative to the waist of
the surrogate beam. When the injected beam is within the
Rayleigh range of the surrogate beam, the near-field propa-
gation algorithm �Eq. �13�� is used with no rescaling of the
grid. For propagation steps outside the Rayleigh range, the
far-field algorithm �Eq. �12�� is employed and the distribu-
tion is rescaled to account for diffraction-induced spreading.
Use of the surrogate Gaussian beam for propagation control
allows an arbitrary distribution to be injected into the reso-
nator to excite many transverse modes.

Diffraction losses arising from the sifting of modes by
the system apertures are treated approximately by assuming
rectangular apertures with dimensions determined by the
facet projections in the direction orthogonal to the beam. In
the plane of the resonator, an aperture width is determined by
the number of facets n and L rt . In the orthogonal direction,
there is no inherent restriction so this dimension is assigned
a sufficiently large value to eliminate any significant contri-
bution to the diffraction loss. A rigorous solution to the prob-
lem of diffraction by a tilted aperture would account for the
variable point-spread function across the aperture plane.
However, the error introduced by neglecting the inhomoge-
neity of the system will be manifested only at high spatial
frequencies, which can be understood intuitively by replac-
ing the propagation distance �z�z2�z1 in Eqs. �12� or �13�
with zeff an ‘‘effective’’ propagation distance, which pro-
vides the correct solution. Since zeff��z, the beam profile
after a propagation of a distance �z will differ from a beam
propagated a distance zeff only at high spatial
frequencies.48,63

Since the aperture size is associated with the facet di-
mensions, the propagation distance between facets is a few
times the in-plane aperture width for regular, polygonal reso-
nators. In this close proximity to the aperture, scalar Fresnel
theory begins to break down for high spatial frequencies,48
so that the approximate treatment of the tilted aperture main-
tains the level of approximation of the scalar Fresnel theory.
Feiock64 investigated the accuracy of the Fresnel approxima-
tion for diffraction by a uniformly irradiated rectangular ap-
erture when the propagation distance beyond the aperture
was comparable to the aperture width �high Fresnel num-
bers�. The on-axis amplitude was found to be accurately de-
termined, while the amplitude near the aperture edge differed
by a few percent from the value calculated using the next
level of approximation to Huygens’ integral, which improves
the accuracy at higher spatial frequencies. To test the sensi-
tivity of our calculated results to high spatial frequencies,
calculations with increasing grid density were examined, yet
only small changes, typically, less than a few percent, were
observed in the energy loss. These results suggest that scalar
diffraction theory within the Fresnel approximation provides
a sufficiently accurate assessment of diffraction losses for the
problem of interest.

IV. RESULTS AND DISCUSSION

To demonstrate the essential characteristics of mono-
lithic TIR-ring resonators that are relevant to CRDS, numeri-
cal results for cavities based on square and octagonal geom-
etries are presented. The cavity material is assumed to be
fiber-optic-grade fused silica �n�1.458,�10 dB/km at 633
nm� for all calculations, except where noted. The square
resonator was investigated since the nominal angle of inci-
dence of 45° is close to the critical angle of 43.3°, providing
maximum sensitivity. In addition, the nominally square cav-
ity is the simplest possible fused-silica stable resonator and
can be considered as the basic building block for a device
analogous to the rectangular waveguide. The relatively low
index of refraction for fused silica requires that the square
resonator be applied as a thin-film probe, since, in accor-
dance with the critical angle condition, the total reflection
will be frustrated by most thick films or liquids. To investi-
gate an appropriate design for application to dilute aqueous
solutions, the fused-silica octagonal resonator was consid-
ered. The use of higher-index cavity materials, such as ultra-
high-purity glasses, permits higher-index solutions to be ex-
amined. This is demonstrated in a spectral simulation in
which an ultra-high-purity-glass octagonal resonator is uti-
lized to probe a nitric acid solution containing the nitrate
radical.

A. Fundamental mode properties

In accordance with Eq. �7�, at least one convex facet is
required to induce stability for a ring resonator. The radius of
curvature of the convex facet influences several important
resonator characteristics, including beam waist size, beam
ellipticity, diffractive losses, and depolarization. The optimal
range for the spherical radius of curvature, RC , is bounded
by fabrication restrictions, stability requirements, and the de-
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sired sampling area. The waists, �x and �y , of the astig-
matic fundamental mode, which provide a lower limit for the
spatial resolution of the device, are given by

�x
2�

�0L rt
2
n � 2RC sin�
/n �

L rt
�1 � 1/2, �14�

�y
2�

�0L rt
2
n � 2RC

L rt sin�
/n �
�1 � 1/2. �15�

Figure 2 shows the dependence of the fundamental waist size
for a nominally square (n�4) resonator over the most useful
range for L rt at 633 nm for several values of the spherical
radius RC . In general, waists are located at (1/2)L rt from the
convex facet apex, which corresponds to a flat facet for n
even, and between flat facets for n odd. It is also found that
�y��x for all values of n and RC , and the degree of ellip-
ticity of the fundamental mode increases with n due to the
steepening angle of incidence.

Figures 3�a� and 3�b� show the stability factors (X ,Y ) as
a function of L rt for square and octagonal resonators. Each
resonator, specified by n , L rt , and RC , is characterized by
the pair of stability factors (X ,Y ) corresponding to the tan-
gential and sagittal planes, respectively. For RC�2, the sta-
bility limit X��1 is reached for the octagonal resonator
within this range of L rt . At this limit, the waist of the lowest-
order mode is no longer defined. The zero crossings for
X(RC�2) indicated by the gaps in Figs. 3�a� and 3�b�, cor-
respond to the confocal condition, which has a well-defined
waist but is borderline unstable. For RC�10, no instability is
encountered over the range of L rt , while for RC�20 the
approach to the upper stability limit of �1 is apparent. The
useful range of RC narrows as n is increased, since the sepa-
ration between X and Y increases. Ultimately, the lower limit
on RC is determined by fabrication constraints, the desired
waist size, and the need to avoid very small waist sizes that
can encourage nonspecular loss mechanisms. The upper limit
is determined by the need to minimize diffraction losses for
very small resonators that will have low bulk attenuation.

B. Diffractive attenuation

Since the excitation of high-order transverse modes can
be important in CRDS, design criteria for minimizing dif-
fraction loss will depend on the excitation conditions. The
greater attenuation of high-order modes for a given system
aperture size will increase the minimum useful L rt . To first
establish a lower limit on resonator size for a given RC ,
diffraction losses under near-perfect mode-matching condi-
tions were examined. Figures 4�a� and 4�b� show the diffrac-
tion losses per round trip as a function of L rt for square and
octagonal resonators with RC�2, 10, and 20 cm. The sum of
bulk and surface scattering losses are also shown for relative
comparison. For each value of n , L rt , and RC , the geometric
mode of the resonator was found, injected into the resonator,
and allowed to circulate for several passes from which an
average diffractive loss was obtained. The geometric mode,
which differs only slightly from the actual lowest-order
eigenfunction, is the round-trip self-reproducing solution
within an ABCD treatment of the resonator. With near-
perfect mode matching, the diffractive loss converges rapidly
with the pass number, so an average over three passes pro-
vided a good estimate of the steady-state value. In Figs. 4�a�
and 4�b�, the diffraction loss decays with increasing L rt al-

FIG. 2. The fundamental eigenmode waist sizes for astigmatic square ring
resonators with a single convex facet are shown as a function of the cavity
round-trip length, L rt , for different radii of curvature of the convex facet.
Symbol key: �y , RC�20 ���; �x , RC�20 ���; �y , RC�10 ���; �x ,
RC�10 ���; �y , RC�2 ���; �x , RC�2 ���.

FIG. 3. Stability factors for the tangential (XS) and sagittal (YS) planes for
�a� square and �b� octagonal ring resonators. The gaps that are present in the
stability function at the zero crossing for XS(RC�2) correspond to the
equivalent of the confocal condition for a linear resonator, which is border-
line unstable.
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most exponentially, with more rapid fall off occurring for
smaller RC . A larger value of L rt is required as n is in-
creased to attain a given level of attenuation, due to the
smaller facet size and larger angle of incidence. Figures 4�a�
and 4�b� identify the lower limit for L rt , since if highly ef-
ficient mode matching is achieved, a resonator with a se-
lected n and RC , should not have a smaller L rt value than
that which leads to diffraction losses of the same level as
other intrinsic losses.

When mode mismatching is employed, diffraction losses
become more significant. Figure 5 shows the loss per pass as
a function of pass number for square, pentagonal, and oc-
tagonal resonators, which have L rt values that provide an 80
dB reduction in diffractive loss or better under nearly ideal
mode-matching conditions. The straight, solid lines for each
resonator geometry correspond to the near-perfect mode-
matching case, which yields a constant loss per pass essen-
tially due to bulk attenuation and surface scattering. When
the injected mode is poorly matched to the eigenmode of the
resonator, a variable loss per pass results for these small
resonators, since the apertures are sufficiently small to at-
tenuate the higher-order modes. For each resonator, the
poorly matched mode corresponds to a Gaussian beam with

the same waist as the fundamental mode, but with the waist
position located at the apex of the convex facet. Many modes
are thereby excited, which can be characterized in terms of
the coupling coefficients between the internal and excitation
field distributions.65 The calculation assumes a delta-function
input pulse with a 633 nm carrier wavelength, which excites
all accessible transverse modes equally for the chosen input
conditions. The different Guoy shifts associated with each
mode give rise to the mode beating observed in Fig. 5. The
variation in the loss per pass is seen to be more severe for
higher values of n , where large amplitude oscillations and
low-frequency beating is apparent. The loss per pass for the
octagonal resonator does approach the mode-matched value
but only after many passes, which may correspond to a sig-
nificant fraction of the photon decay time in some cases. In
CRDS, the assumption is made that for the empty cavity all
modes decay with the same time constant. Since diffraction
losses are inherently transverse-mode dependent, the effects
of apertures must be reduced to a negligible level for all
cavity modes with significant intensity. Therefore, the design
criteria for reducing diffraction losses becomes dependent on
the degree of mode mismatching.

Figures 6�a� and 6�b� show diffractive losses as a func-
tion of L rt for square and octagonal resonators, where the
injected mode is intentionally mode mismatched. For the
square geometry, the injected mode waist is located at the
apex of the spherical facet with a waist size equal to three
times the waist size of the fundamental mode. For the oc-
tagonal resonator, the injected mode waist is also located at
the convex facet apex, but with twice the diameter of the
fundamental mode, since larger values showed very large
attenuation. The loss per pass for the injected mode was
averaged over several passes, which yielded an upper bound
for the diffractive loss, since many passes were required to

FIG. 4. The attenuation due to apertures is shown as a function of L rt , under
conditions of perfect mode matching, for nominally �a� square and �b� oc-
tagonal ring resonators. Three radii of curvature, RC�2, 10, and 20 cm, are
considered for the single convex facet. The heavy, dot-dashed line corre-
sponds to the sum of bulk and surface scattering losses.

FIG. 5. The loss per pass is shown to be dependent on the number of passes
�round trips� for very small cavities due to aperturing of high-order trans-
verse modes, when mode mismatching is used. Both the mode-matched and
mode-mismatched cases are shown for nominally square, pentagonal, and
octagonal resonators. The perfect mode-matching case corresponds to the
straight, solid lines for each geometry. The loss per pass as a function of
pass number represents an alternative form of the ring-down function, which
provides a time history of the loss per pass. In the case of mode mismatch-
ing, the system apertures are sufficiently small for the cavity sizes selected
that a time �pass number� dependent loss per pass results as the high-order
modes are selectively attenuated.
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achieve steady state for some values of L rt . Figures 6�a� and
6�b� show greater deviation from simple exponential decay
than is observed for near-perfect mode-matching conditions.
For the octagonal resonator with RC�2, the Xs�0 and Xs
��1 instability points are encountered, which greatly per-
turb diffraction losses. In general, the L rt values that are re-
quired to render diffractive losses as negligible are much
larger for mode-mismatched cavities. An optimum value of
L rt should exist for selected excitation conditions that mini-
mizes resonator total loss through a competition between
bulk attenuation and diffractive loss. If a sufficiently long
photon decay time to permit accurate digitization is achieved
for the optimum L rt , when surface scattering and coupling
losses are also included, then a miniature-cavity ring-down
spectrometer becomes feasible.

C. Coupling loss

The coupling loss by photon tunneling is strongly depen-
dent on gap width, wavelength, angle of incidence, and po-
larization. Figures 7�a� and 7�b� show coupling loss as a
function of gap width for square and octagonal resonators,
where an air-filled gap is assumed. Both s �out-of-plane� and
p �in-plane� polarizations are considered for three wave-

lengths. The logarithmic plots of Fig. 7 emphasize the weak-
coupling regime, which is characteristic of large gap widths.
In general, coupling loss increases exponentially with wave-
length at a fixed gap width, since the penetration depth of the
evanescent field is proportional to wavelength. The polariza-
tion dependence reveals stronger coupling for p polarization
for the square cavity and stronger s-polarization coupling for
the octagonal cavity with an air-filled gap. As the angle of
incidence moves away from the critical angle �increasing
n�, coupling loss decreases sharply for a given gap width, as
manifested by the large difference in gap width required to
obtain the same coupling loss for the square and octagonal
resonators. The gap width required to achieve a selected cou-
pling loss could be increased for the octagonal resonator by
using a gap medium other than air. Gap widths that are 1 �m
or greater are desirable to facilitate the use of interferometry
for monitoring the gap width and for reducing the surface
flatness requirements.

D. Polarization properties

The polarization dependence of photon tunneling, along
with the polarization preserving character of monolithic,
TIR-ring resonators, has been applied effectively to construct
efficient harmonic conversion devices.22,23 For spectroscopic

FIG. 6. The attenuation due to apertures is shown as a function of L rt , when
intentional mode mismatching is utilized, for nominally �a� square and �b�
octagonal ring resonators. Three radii of curvature, RC�2, 10, and 20 cm,
are considered for the single convex facet. The heavy, dot-dashed line cor-
responds to the sum of bulk and surface scattering losses.

FIG. 7. Coupling efficiency for photon tunneling is shown as a function of
separation between the coupling element and the resonator for nominally �a�
square and �b� octagonal resonators at several wavelengths and both polar-
izations. The logarithmic plot emphasizes the weak-coupling regime.

2986 Rev. Sci. Instrum., Vol. 68, No. 8, August 1997 Cavity ring-down spectroscopy

Downloaded 05 Mar 2012 to 129.6.144.116. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



applications, extraction of polarization-dependent informa-
tion from optical absorption measurements would greatly en-
hance the utility of an evanescent wave CRDS device. When
a linearly polarized beam is injected into a TIR-ring resona-
tor, polarization cross coupling can be induced by pyramidal
error, surface curvature, and stress birefringence. Pyramidal
error, which results when the TIR surface normals deviate
from the plane of the resonator, can induce polarization cross
coupling, since the phase shift that occurs at a TIR surface
differs for orthogonal polarization components, thereby gen-
erating elliptical polarization. This phase shift has a maxi-
mum value of 
 at � i��c and 90°, and attains a minimum
value between these limits.66 For a pyramidal error of 0.1°, a
polarization conversion of �3 ppm is incurred. Similarly,
curved surfaces induce polarization cross coupling, since the
orientation of the local surface coordinate system in which
the orthogonal polarization components are defined, varies as
a function of position. Polarization conversion is largest for
high-curvature surfaces, but for the curvatures considered
here, the degree of depolarization was found to be on the
order of only a few ppm. The more significant source of
depolarization is stress birefringence, which induces an in-
dex variation, �n , between orthogonal polarization states
that gives rise to a retardation per round trip, �, given by

��
2


�
�nL rt . �16�

For high-quality optical materials, an index variation of �n
�5�10�7 is typical, which gives rise to a maximum polar-
ization conversion of �0.25% per cm at 633 nm. This de-
gree of polarization cross coupling should not preclude
polarization-dependent phenomena from being probed.

E. Optimum cavity design

A monolithic cavity implementation of CRDS becomes
feasible only if appreciable photon decay times can be ob-
tained to permit accurate digitization. Photon decay times on
the order of microseconds, which are commonly encountered
in conventional CRDS, can be accurately digitized to provide
a minimum detectable relative change in the decay time of
�0.2%–1.0%.1 To facilitate the detection of very small ab-
sorptions, the total intrinsic loss of the system must also be
small. A minimum in the intrinsic loss as a function of L rt
should exist, which arises from the competition between bulk
and diffractive losses for chosen excitation conditions. Fig-
ures 8�a� and 8�b� show the photon decay time �heavy solid
line� as a function of L rt for square and octagonal resonators,
where the mode-mismatching conditions of Fig. 6 have been
employed. The total system loss �long-dashed curves�, in-
cluding bulk, surface, diffractive, and coupling losses, and
the sum of surface plus bulk losses �circles�, are also shown,
corresponding to the right-hand axis. Note that the photon
decay time increases sharply as diffraction losses decrease to
yield decay times that are on the order of a microsecond. As
L rt is increased further, the decay time approaches a constant
value. The rapid rise in the decay time occurs over the range
of L rt , where the total system loss minimizes. The value of
L rt that provides the smallest total system loss will provide

the lowest detection limit. Also shown in Figs. 8�a� and 8�b�
for relative comparison is the ratio of the photon decay time
to the total system loss �dotted curves�, which is proportional
to the derivative of the photon decay time with respect to
loss. This function, which provides a measure of sensitivity,
shows a maximum in the vicinity of the total loss minimum.
An optimum value for the cavity size, therefore, exists that
minimizes the total intrinsic loss, while providing appre-
ciable photon decay times. Calculations for the case of near-
perfect mode matching, which are not shown, revealed simi-
lar functional forms to those shown in Fig. 6, but with a
lower minimum loss, which occurred at smaller L rt .

F. Calculated spectra

To demonstrate the performance of a TIR-ring resonator
as an evanescent wave CRD spectrometer, a calculated
absorption spectrum for the nitrate radical in
2 mol L�1HNO3 (n0�1.35) is presented in Fig. 9. An
octagonal, ultra-high-purity-glass �n1�1.52, �20 dB/km�,

FIG. 8. An optimal cavity size is found, based on selected mode-
mismatching conditions, for the �a� square and �b� octagonal resonator ge-
ometries. The heavy, solid curves describe the photon decay time as a func-
tion of L rt . The long-dashed curve and line demarked by opaque circles,
correspond to the right-hand-side axis and describe the total loss and the
sum of bulk and surface losses, respectively. The photon decay time is seen
to increase rapidly as diffraction losses decline and to asymptotically ap-
proach a constant value in the limit of large L rt . The total loss function
displays a minimum at which the sensitivity for detecting small absorbance
changes will be maximized. The dotted line corresponds to the ratio of the
round-trip time to the square of the cavity losses, which provides a measure
of sensitivity. This function is plotted for relative comparison only and does
not correspond to either ordinate.
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resonator was assumed in the calculation, since a higher-
index material than fused silica is required to prevent radia-
tive losses when a dense, bulk solution is probed. The value
for L rt is 2.105 cm, which corresponds to the resonator size
that minimizes the total system loss (�L i�1.11�10�4), as
discussed in Sec. IV E. The nitrate radical was selected for
its relatively structured absorption spectrum in the visible
region. The conventional transmission spectrum of NO3, ob-
tained after pulse radiolysis of 6 mol L�1HNO3, is also
shown in the inset plot for comparison of spectral features.
Absorption cross-section data for NO3 were obtained by us-
ing the spectrum of Neta and Huie67 and the molar extinction
coefficient of Wine et al.68 (�635 nm�830 mol L�1 cm�1).
The evanescent wave absorption, occurring at six facets, was
rigorously incorporated in the calculations by using the for-
mulation of Hansen69 for attenuated total reflection by a bulk
solution. Some spectral distortion, due to the wavelength de-
pendence of the effective sampling depth is apparent, al-
though for the relative refractive index of ni /n0�0.888, the
difference of 4.85° between the critical angle and the angle
of incidence provides an absorptionlike rather than disper-
sionlike spectrum.33 A detection limit of 1�10�6 mol L�1 is
found, assuming a minimum detectable change in the photon
decay time of 0.5%. With an effective thickness of approxi-
mately 1.2 �m at 635 nm, these results demonstrate that
evanescent wave CRDS can be used to detect small concen-
trations of moderate absorbers in thin films.

A wave-optics model has been employed to explore the
feasibility of a minicavity implementation of CRDS that uti-
lizes the unique properties of total reflection to form a sen-
sitive, broadband, optical absorption probe. The approach
combines cavity ring down and ATR spectroscopies to ex-
tend the advantages of ATR into the trace analysis regime.
An optimum cavity design is predicted to exist, which pro-
vides appreciable photon decay times and high sensitivity for
the measurement of small absorbance changes. The optimum
design depends on the intended application and excitation

conditions. Quantitative evaluation of diffraction losses is
critical for the determination of a precisely optimized design.
However, the relatively slow rate of change of bulk attenua-
tion with cavity round-trip length as shown in Fig. 8 suggests
that a larger cavity than the optimal size will also provide
good sensitivity. The calculations presented here are in-
tended to provide guidance for the selection of an appropri-
ate cavity design for a given application. Although mono-
lithic cavities that are fabricated from conventional high-
transmission optical materials have been the focus of this
work, liquid cavities or cavities fabricated by molecular
beam epitaxy could widen the range of application of the
concept.
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