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An eigenmode analysis of the response of an empty ring-down cavity to an arbitrary laser excitation
is presented. By explicitly taking into account both the mode structure of the ring-down cavity and
the spectral content of the laser pulse, it is found that the complicated ring-down signals commonly
observed in the laboratory can be interpreted in terms of cavity mode beating. Some conclusions
drawn from this analysis are verified experimentally by measurements of the time and frequency
response of empty cavities. These observations provide clear evidence for the existence of
longitudinal and transverse mode structures in ring-down cavities.

. INTRODUCTION

Many industrial processes are prone to reduced product
yields and increased product defects as a consequence of
trace-level gaseous contaminants. In such applications, there
is a critical need for sensitive and accurate real-time moni-
tors of contaminant concentrations. This need has driven the
demand for standards-grade measurements of low level gas-
eous contaminants, most notably water. In response to this
demand, we are exploring experimental techniques based on
cavity ring-down spectroscopy (CRDS)'™® as the basis for
new density measurement standards in vacuum environments
and process gas streams.

Although CRDS is considered to be one of the most
promising spectroscopic tools for quantitative measurements
of rarified species,’ its full potential has not yet been real-
ized. Toward this end, we are investigating some of the fac-
tors that limit quantitative, CRDS-based absorbance mea-
surements. For example, as delineated by Zalicki and Zare®
and demonstrated in our laboratory,8 finite linewidth effects
tend to make the characteristic light amplitude decay nonex-
ponential when the excitation laser is tuned to an absorption
feature, and this in turn leads to an underestimation of the
absorptive losses. In this paper we investigate the details of
the complex temporal structure of ring-down signals com-
monly observed in the laboratory. Measured ring-down sig-
nals usually possess a great deal of periodic, high frequency
structure superimposed on the overall decay signal, and this
structure varies from shot-to-shot. Clearly, for the ultimate
potential of CRDS as a quantitative spectroscopic technique
to be realized, it is necessary to have a detailed understand-
ing of the physical mechanisms that give rise to these com-
plexities. In particular, the present work is motivated by the
lack of a clear understanding of how the details of the con-
struction of ring-down cavities and the characteristics of the
excitation laser such as laser bandwidth and laser temporal
coherence affect the temporal structure of ring-down signals.

The present work is also motivated by conflicting claims
regarding the frequency selecting nature of ring-down cavi-
ties under pulsed excitation. In a recent paper by Zalicki and
Zare,> an analysis of ring-down cavities within the frame-

work of Fabry—Perot theory was presented. Their simula-
tions predicted that the energy transmitted by the ring-down
cavity as a function of laser detuning is not constant for
certain experimental configurations. Under such conditions,
Zalicki and Zare concluded that entire absorption features
could be missing from spectra measured with CRDS if these
features occurred at unpropitious frequencies. Subsequently,
Scherer et al.® reported a series of experiments intended to
test these predictions. They claimed that results of their ex-
periments demonstrated a failure of the analysis of Zalicki
and Zare and further conjectured that ring-down cavities are
frequency selective only when the coherence length of the
excitation is long relative to the round-trip cavity length. In
response to those experiments, Lehmann and Romanini'®
presented a general framework, based on the superposition
principle, for describing the excitation and response of ring-
down cavities. They demonstrated that ring-down cavities
act as frequency filters regardless of the temporal profile of
the input field as long as the cavity ring-down time is long
compared to other relevant time scales, such as the dephas-
ing time of the absorbing species.

Here we present an eigenmode analysis of the empty
ring-down cavity response that is based on the well-
established theory of stable resonators. By examining in de-
tail the eigenmode decomposition of the cavity fields, we
explicitly analyze the time and frequency response of an
empty ring-down cavity. The general case of cavity excita-
tion by an arbitrary laser pulse is presented, and the specific
case of cavity excitation by a frequency modulated
(““chirped’’) Gaussian pulse is examined in detail. Following
this analysis, we present the results of experiments designed
to verify specific predictions of the model. The goal is to
investigate the validity of a stable resonator description of
ring-down cavities injected with pulsed laser light. We find
that the experimental results are consistent with predictions
obtained from the stable resonator framework, and we be-
lieve this viewpoint also can explain the results of Scherer
etal’



Il. RESPONSE OF A RING-DOWN CAVITY TO AN
ARBITRARY EXCITATION

We consider the case of an open, axisymmetric stable
resonator'' '3 constructed from two identical mirrors of fi-
nite intensity reflectivity R and radius of curvature r that are
separated by a distance /. The origin of the Cartesian coor-
dinate system is defined to be at the center of the cavity and
the z axis is coincident with the cavity axis. We denote

E(x,y.z,t)=e(t)u(x,y,2)exp(—iw.t) (1)

to be the time-domain complex analytic representation'* of a
linearly polarized input laser field, where w, is the laser car-
rier angular frequency, u,(x,y,z) specifies the transverse
profile and direction of propagation of the pulse, and

e;(t)=A(t)expliP()] 2)
describes the pulse envelope and the associated phase varia-
tion with time, ¢. The instantaneous angular frequency of the
field, w, is given by15
dd(1)

dr

W=~ (3)
The spectrum of the incident (excitation) field, €;(w), is
found via Fourier transformation of e;(¢) and has the general
form'*

ei(w)=a;(w—w)explig,(w—w.)], 4)
where a,(w—w,) and ¢,(w— w,_) are the spectral amplitude
and phase of the field, respectively. The power spectrum of
the incident laser pulse is given by the modulus squared of
the spectral amplitude and is peaked at w,. For transform-
limited pulses, ¢,(w— w,) is a constant, ¢.

The cavity eigenmodes of an open resonator or cavity
constitute sourceless configurations of the electromagnetic
field that satisfy Maxwell’s relations and the boundary con-
ditions imposed by the mirrors.'*!® These modes are
uniquely denoted by the label, TEM,,,,, for the Gauss—
Hermite polynomials of order (m,n) or, TEM,, for the
Gauss—Laguerre polynomials of order (p,/). The (m,n) and
(p,!) indices represent the number of nodes of the transverse
electromagnetic field (the ‘‘transverse mode’’), and the index
q index is the number of nodes of the axial standing wave
along the cavity axis (the ‘‘longitudinal mode’’). The eigen-
frequencies, v,,,,, of an empty resonator are given by'>!?
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where ¢ is the speed of light. The eigenfrequency associated
with mode TEM, ,; can be found by associating 2p+/ with
m+n. Adjacent longitudinal modes (Ag=1) with identical
transverse mode indices are separated by the cavity free
spectral range, o 27=v,~c/2l, and adjacent transverse
modes [Ag=0 and A(m+n)=1] are separated by v,,
= (c¢/ml)arctan[l/\I(2r—1}]. The relative values of » and /
determine the transverse mode spacing, and as Eq. (5) illus-
trates, for fixed » the more disparate » and /, the smaller the

separation is between transverse modes in comparison to the
longitudinal mode spacing. A maximum separation of
V,,= Y, OCCurs in a concentric resonator, for which /=2r. In
general, transverse and longitudinal modes are not degener-
ate, and there is essentially a continuum of modes. However,
for a fixed r there are certain cavity lengths for which the
ratio of the longitudinal-to-transverse mode spacing, v/ v,,,
is integer-valued (termed a ‘‘magic’’ number).'” We exploit
this degeneracy feature for such ‘‘magic’’ number cavities in
the experiments described below. Meijers et al.'® and Leh-
mann and Romanini'® have previously discussed these points
in the context of CRDS.

Each cavity eigenmode will be excited to varying extent
depending on the overlap of the spectral content of the inci-
dent field with the cavity eigenfrequency structure and to the
extent to which the transverse profile of the incident beam
overlaps with the cavity transverse eigenmodes. The net field
in the cavity is simply a weighted sum of all of the excited
eigenmodes. Using the Gauss—Hermite polynomials,'®
Un(x,v,2), as the basis set, the total field can be written as

E(x,y,z,w>=§ > Comntrmn(%,3,2)E g @), (6)

where C,,, are the spatial coupling coefficients given by'* 22

Con= || w1, =12 ax @y
™

The associated time evolution, £(x,y,z,t), is found via Fou-
rier transformation of Eq. (6).

The frequency coupling is expressed through the com-
plex optical transfer or response function, .%’qmn(w), which
relates the output field spectrum of mode (q,m,n) to the
input spectrum!®

Epmn( @)= F (@) E}( @). ®)

For the stable resonators considered herein, the total re-
sponse function is the usual Fabry—Peérot response function
given by*

z)mn 9
(= Zp) - eoxplito—agt]” )
where %, is the total resonator intensity loss per pass. This
response function, which depends on properties of the cavity,
represents the total response at frequency w from all of the
longitudinal cavity modes associated with a given transverse
mode. It can be written as the summation over all individual

longitudinal cavity mode response functions for transverse
mode (m,n)**
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where I',,, is the cavity linewidth and ¢#,=2//c is the cavity
round-trip time. For frequencies close to the resonance,
[(w— wqm,,)lt,<1 and for small losses such that.%,,, <1, the
individual mode response functions of Eq. (10) are closely
approximated by the familiar dispersion function,

an

mn_i(w_wqmn) )

Fym(0)~ (11)
This approximate decomposition of the total cavity response
function into the sum of dispersion functions facilitates in the
eigenmode decomposition of the total field exiting the cavity.

The finite cavity linewidth arises from losses in the reso-
nator such as the finite reflectivity of the mirrors and trans-
verse mode-dependent diffraction losses. The linewidth, the
intensity decay constant, 7, , and the intensity loss per pass
are all related through,

1 —In(1-%,,)

2Tpn t
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(12)

For mirrors of intensity reflectivity R, and diffraction losses
4T " the total loss per pass is given by

Srun=1— R+ 74 (13)

Here 1—R includes the losses in the dielectric mirror coating
and mirror substrate that are associated with absorption, scat-
tering, and transmission of the light. The phase shifts in the
reflected field due to these weakly frequency-dependent ab-
sorption and scattering processes are expected to be small
and have been neglected in this discussion.

An important figure of merit for an open resonator is the
effective Fresnel number, N, which represents the ratio of
the angle subtended by one mirror to the angle of diffraction
of the electromagnetic wave as it travels across the cavity.
This determines %% and in turn the maximum mode order
sustainable in a cavity,?® which is of the order of 7N .. For a
particular transverse mode,?’ 3" the diffraction losses de-
crease exponentially with increasing Np. As a typical ex-
ample, consider a 50 cm long ring-down cavity constructed
from | cm diameter mirrors with 1—-R=10"% and »=100
cm. For this cavity, Nz~20, and in this case, an‘ff ~ 1074
only when m-+n~46. Thus, only very high order modes
have diffraction losses comparable with those associated
with the finite mirror reflectivity.

The excitation of the transverse modes is governed by
the overlap integral, Eq. (7). Its structure implies that on-axis
injection of an axisymmetric beam will excite, to a varying
extent, all even-order modes of the cavity unless perfect
mode matching is achieved.?*? In practice, transverse mode
matching is not ensured without careful measurements of the
spatial structure of the light exiting the cavity. On the other
hand, light injected off-axis will excite, to a varying extent,
both even- and odd-order cavity eigenmodes. Since the clas-
sical optics ray trajectories within cavities can be cast in
terms of a linear superposition of cavity transverse
eigenmodes,®! the propagation of light within a cavity along
off-axis paths implies the excitation of many transverse
modes. Furthermore, despite claims to the contrary,® the cav-
ity eigenmodes do not ‘‘walk’’ around the cavity exit plane,

since the ¢,,,’s are time independent. However, since the
total field is expressed as a linear superposition of the eigen-
mode terms, it can assume a complicated space and time
dependence which describes ray propagation within the
cavi’ty."’z’33

Using Eq. (8), along with Eqs. (4) and (11), one can
calculate the total field exiting the cavity, given by Eq. (6).
After Fourier transformation to obtain the time-domain rep-
resentation of the total field, we can derive an expression for
the radiant flux transmitted through the end mirror of the
cavity (signal), #(¢). In the limit that both the amplitude and
phase variations in the excitation spectrum are broad relative
to the width of the cavity modes, we find

g(t)zz\ifo///«o E 2 ai(wqmn_wu)ai(wq’m’n'_wc)
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where €, and w, are the permittivity and permeability of free
space, respectively.

This expression describes the time evolution of the out-
put signal arising from radiation from the excited cavity
modes, but assumes an instantaneous cavity response at 1=0.
It is in general valid for times greater than the input laser’s
pulse duration and shows that the output signal is a sum of
weighted exponential decays modulated by sinusoidal beats
whose frequencies correspond to the cavity eigenfrequency
spacings. Although this expression describes beating be-
tween all excited modes, transverse mode beating will be
observed only if the orthogonality between transverse modes
is not preserved, such as when part of the detector is ob-
scured, when the detector has a nonuniform response, or
when there are inhomogeneous losses in the output coupling
optics. This expression also accounts for the effect of tem-
poral incoherence in the input laser field through the varia-
tion in the phase of the input spectrum.

One can calculate the complete ring-down signal, includ-
ing the transient response of the cavity using the response
function of the cavity, Eq. (9), and numerical Fourier trans-
formation of Eq. (6). The result of such a computation for the
single mode excitation of a 13.4 cm long cavity (v,=1.12
GHz, %,,,=0.002/pass) by a transform-limited Gaussian
pulse (Avpwnm=93 MHz, Atpywuv=4.80 ns) is given in Fig.
1. In this calculation, the laser carrier frequency was detuned
from the nearest cavity eigenfrequency by 100 MHz. The
transient response of the cavity exhibits a sharp spike near
t=0, and this transient is completely over in ~3 laser pulse
widths (~15 ns). After that time, the output is the single
exponential decay precisely predicted by Eq. (14). Use of
Eq. (11) in lieu of Eq. (9) for the response function gives
nearly indistinguishable results, indicating that the dispersion
function is an excellent approximation to .#,,,,(w) for this



case. Other calculations demonstrate that for a given excita-
tion the transient spike does not change with detuning of the
laser, and that the variation in the amplitude of the exponen-
tially decaying signal is precisely as predicted by Eq. (14).
For zero detuning, the amplitude of this spike and the expo-
nential signal are equal. Also shown in Fig. 1 is the calcu-
lated temporal variation of the instantaneous frequency [Eq.
(3)] of the exiting field. As is evident from this figure, the
instantaneous frequency of the output field chirps from the
laser -carrier frequency to the nearest cavity eigenfrequency
during the transient portion of the cavity’s response. This
result demonstrates that the ring-down signal contains infor-
mation only about the optical losses at the cavity eigenfre-
quencies. Finally, from these simulations we find that Eq.
(14) contains all the information about the decay signal that
is of interest in CRDS.

Another measurable quantity is the energy transmitted
by the cavity as a function of laser carrier frequency, 4(w,).
We define the cavity transmittance, .7 (w,), to be, #{w.)/¥%,,
where £, is the incident pulse energy. This is calculated by
taking the modulus squared of the total exiting field given by
Eq. (6), integrating over the exit plane of the cavity, and
integrating over all frequencies. [Note that the summation
over the longitudinal mode index, g, yields the total cavity
response function of transverse mode (m,n) operating on the
input excitation spectrum.] The resulting transmittance, valid
for an arbitrary input field, is

Tlw)=7 f Vool > |Cl?
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FIG. 1. Calculated ring-down signal (solid line) and instantaneous fre-
quency of the associated electric field relative to the nearest cavity eigen-
frequency (dashed line) for the single mode excitation of a 13.4 cm cavity
(v=1.12 GHz, %£,,=0.002/pass) by a transform-limited Gaussian pulse
(Avpwin=93 MHz, Afryyy=4.80 ns). Note that the exponential decay of
the ring-down signal only contains information about light at the cavity
eigenfrequency.

In this expression, the integrand represents the power spec-
trum of the light exiting the cavity. For the case of perfect
mode matching, when the cavity linewidth is small relative
to the bandwidth of the input laser power spectrum, and
when the cavity mode spacing is large relative to the input
spectral bandwidth, Eq. (15) yields the intuitive result that
measurement of the transmitted energy as a function of laser
carrier frequency simply maps out the laser’s power spec-
trum. In the opposite limit, when the laser’s power spectrum
is narrow compared to the cavity linewidth, this expression
yields the familiar Fabry—Pérot intensity transmission func-
tion which is given by the square of the modulus of Eq. (9).
When the width of the laser power spectrum becomes com-
parable to the cavity longitudinal mode spacing, adjacent
transmission peaks start to overlap and modulation in the
transmitted energy is reduced. In this regime, the transmit-
tance becomes independent of the laser carrier frequency.
However, this does not imply that all laser frequencies are
transmitted by the cavity. On the contrary, Eq. (15) shows
that only light at frequencies near the cavity eigenfrequen-
cies contributes to the transmittance. Coupling into multiple
transverse modes tends to reduce further any modulation in
the transmittance. Finally, in their recent paper Zalicki and
Zare® presented cavity transmittances calculated using a
time-domain formalism and assuming excitation of a single
transverse mode. Calculations using Eq. (15) and the excita-
tion spectrum implied in their analysis yield results identical
to theirs.

Since the cavity transmittance is measured on a time-
averaged basis, there are several effects which could prevent
the experimental realization of the transmittance predicted by
Eq. (15). An obvious effect is shot-to-shot variations in the
excitation power spectrum. Another mechanism is fluctua-
tions in the cavity eigenfrequencies associated with changes
in the optical pathlength. A change in the optical pathlength
of &1 will shift the cavity eigenfrequencies by>*

61

When fluctuations in / associated with mechanical vibrations
and thermal expansion of the cavity are slow relatlve t0 T, s
single-shot cavity linewidths may not be degraded.>® Never-
theless, such fluctuations in the cavity optical pathlength can
be important over the course of time-averaged measure-
ments. Consequently, the narrow transmittance features pre-
dicted by Eq. (15) can only be realized with length-stabilized
cavities. Similar effects can arise from density fluctuations in
the cavity medium.

A useful model for the incident laser field that provides
some insight into the effects of temporal incoherence on the
ring-down signal is that of a Gaussian time envelope with a
linear frequency modulation or chirp.'® The model is useful
because the time and frequency transform pairs of the field
can be written in a closed form, and moreover it reflects the
essential physics of the effect of temporal incoherence in the
input field. This input field of amplitude E, can be written as



ei(t)=Eq exp(— yt*+ipBt?), (17)
where B is the chirp parameter, and the instantancous angular
frequency is,

o(f)=w,—2p6t. (18)

The temporal duration of the intensity of the input laser pulse
is

21n(2)
Atpwam= y (19)

and for this pulse the time-bandwidth product is

Awpyay Atpwam=4 In(2) V1 +(B8/y), (20)

where the times-transform-limit factor, n,=+1+(8/ 7, is
the ratio of the bandwidth of the pulse to the bandwidth of a
transform-limited pulse having the same temporal width. In
the limit that 8—0, Eq. (20) reduces to the well known reci-
procity relation for transform-limited Gaussian pulses.

Subject to the same assumptions used in the derivation
of Eq. (14) and assuming that the orthogonality of the trans-
verse modes is preserved, excitation by a chirped Gaussian
pulse leads to

) E2'TT 9 max
(1) =2 e/ g —3— > ICmnIZ[ > T2, exp(— (0gma— o) 20%) - exp(— 2T ,,t)
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for the output signal of the ring-down cavity, where, the
effective e "2 angular frequency half-width of the excitation
power spectrum is

o=\ 1+ (B/7) ]=nv, (22)

and in which the spectral phase of the input field is
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1li. DISCUSSION
A. Mode beating effects

The number of longitudinal modes contributing to the
signal scales with the ratio of twice the laser linewidth to the
longitudinal mode spacing of the cavity, 7=2-0.4/w,. De-
fining a “‘short’” cavity as one for which #<1, in this limit a
single longitudinal mode for each transverse mode will be
dominant, and the total energy transmitted by the cavity will
vary strongly with w_.. The excitation of a single mode will
yield a single exponential decay, as long as orthogonality is
maintained and losses are independent of transverse mode
order. Consider next the opposite extreme, denoted as the
““long”’ cavity limit where n=1. In this limit, several longi-
tudinal modes will be excited regardless of w, and longitu-
dinal mode beating will occur. For this case, &(¢) corre-
sponds to a series of pulses separated in time by the cavity
round-trip time where the pulse amplitudes are exponentially
decaying. Given excitation of a single transverse mode, the
envelope of Z(¢) will be a single exponential having a decay
constant characteristic of that transverse mode and neither
the depth of modulation of the pulses nor the total energy

transmitted by the cavity will depend greatly on w, . For the
“‘intermediate’’ case in which the cavity is neither ‘‘short”’
nor ‘‘long,”” &(z) will be a decaying signal modulated by
longitudinal and perhaps transverse mode beats, with a
modulation depth dependent on w, and 7.

To illustrate these mode beating effects for the ““short,”
“‘intermediate,’’ and ‘“long”’ cavity cases, Eq. (21) was used
to model output signals, using transform-limited pulses with
7=0.1, 0.75, and 1.25. The results are shown in Fig. 2. In the
case 7=0.75, although the modulation depth is sensitive to
w, , this effect is diminished when multiple transverse modes
are excited. Thus, to the extent that the excitation is not
mode matched, variations in the modulation depth of the
output pulses for cavities of ‘‘intermediate’’ length (as a con-
sequence of shot-to-shot variations in w,) will be reduced.
For the “‘long’ cavity excitation [Fig. 2(c)] the shape of the
output pulses is very nearly Gaussian and appears to be a
replica of the input pulse. However, bécause of the frequency
selectivity of the cavity, we reiterate that the power spectrum
of the light exiting the cavity is not identical to the excitation
power spectrum.

B. Coherence effects

As Wolf and co-workers*®37 have demonstrated, the de-
gree of coherence for any electromagnetic field in a cavity
can be described using the fundamental cavity eigenmodes.
Also, as demonstrated by Lehmann and Romanini,'® incoher-
ence in the excitation pulse in no way affects the frequency
response of a cavity. Thus, the present eigenmode analysis of
cavity excitation by nontransform limited pulses should

properly account for the coherence of the incident field.
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FIG. 2. Ring-down signals calculated using Eq. (21) for (a) ‘‘short,”” (b)
“‘intermediate,”’ and (c) ‘“long’’ cavity cases for transform-limited pulses
with #=0.1, 0.75, and 1.25, respectively. For these calculations, the excita-
tion spectrum was centered on a cavity eigenfrequency.

To investigate further the role of temporal incoherence
in the incident field, we have used Eq. (21) to calculate ring-
down signals for chirped pulses. In Fig. 3 we present a por-
tion of the output signal of a 100 cm long cavity for excita-
tion by three different pulses having the same energy. These
cases are labeled (a), (b), and (c) and correspond to
(Atpwum >AVewam )= (3.30 ns, 134 MHz, 1), (3.30 ns, 535
MHz, 4) and (0.825 ns, 535 MHz, 1), respectively. The ex-
citations associated with cases (a) and (b) have the same
temporal envelopes, whereas those of cases (b) and (c) have
equivalent bandwidths. The total energy transmitted for case
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FIG. 3. A portion of the ring-down signal calculated using Eq. (21) for a
100 cm cavity for excitation by three pulses having the same energy but
with varying bandwidth and temporal coherence. The three cases are labeled
(a), (b), and (c) and correspond to (Afpwum, Avrwanm» #,)=(3.30 ns, 134
MHz, 1), (3.30 ns, 535 MHz, 4) and (0.825 ns, 535 MHz, 1), respectively.
The excitations associated with cases (a) and (b) have the same temporal
envelopes, whereas those of cases (b) and (c) have equivalent bandwidths.

(b) is approximately 10% less than that of case (a), while
cases (b) and (c) are predicted to have identical throughputs.
Turning to Fig. 3, the time-integrated signals corresponding
to cases (a), (b), and (c) give the same relative energy trans-
mittance as predicted by Eq. (15). Comparison of cases (a)
and (b) shows that the main effect of the chirp in the excita-
tion is to distort the emergent pulses. Comparison of case (b)
to case (c) also indicates that chirp in the excitation yields
distorted pulses at the cavity exit. These calculations reveal
that the changes in the temporal coherence associated with
different degrees of chirp in the excitation are encoded in the
@ (w— w,) and manifest primarily in the shape of the pulses
exiting the cavity. For ““short’’ cavities and in the limit that
the excitation phase does not vary significantly over the cav-
ity linewidth, the purely exponential ring-down signal will be
essentially independent of the temporal coherence of the la-
ser pulse. Also, since ring-down signals depend on the inci-
dent pulse’s coherence, we speculate that ‘intermediate’
length ring-down cavities may be used as a tool for the char-
acterization of incoherence in laser pulses.

Scherer ef al.%® have recently discussed the frequency
response of ring-down cavities to excitation by pulses of
varying coherence properties. They asserted that the fre-
quency selectivity of the cavity depends largely on the ratio
of the round-trip cavity length, 2-/, to the coherence length,
1., of the input laser pulse. According to their analysis, for
2-1/1.=1, ring-down cavities are not frequency selective, and
it is claimed that experimental measurements of constant
transmittance as a function of laser carrier frequency support
this model. Conversely, they claimed that ring-down cavities
exhibit frequency selectivity only in the regime, 2-1//.<1.
Their results are at odds with the present analysis.

We would like to offer a few comments on their analy-
sis, particularly on the use of coherence length to predict the



transmittance properties of ring-down cavities. First, it is
well known that the response function for a linear optical
device depends only on system parameters (e.g., mirror re-
flectivities, geometry) and not on the incident field.'>*® Sec-
ond, the coherence time, 7.=/,/c can be defined in a number
of ways,” and as such it provides neither a unique nor com-
plete measure of the degree of temporal coherence of a laser
pulse. As an example, Wiolf has defined 7, as the normalized
root-mean-square width of the autocorrelation of the com-
plex analytic field amplitude at a given point in space while
Mandel has defined 7, to be the power-equivalent width of
the normalized autocorrelation function. For pulses with
Gaussian temporal and spectral distributions, Wolf’s defini-
tion gives, 7, = Atpwum/(2VIn(2)), while that of Mandel is
strictly proportional to the reciprocal of the spectral width,
7. = AwpgumV8 In(2)7r. Thus, by the first definition, cases
(a) and (b) considered above have the same coherence
lengths, whereas in terms of the second definition, the coher-
ence lengths of cases (b) and (c) are identical. We conclude
that the use of coherence time of the excitation pulse cannot
be used to predict cavity response. Rather, when addressing
coherence effects, the cavity response function and a rigor-
ous description of the excitation field, a,(w—w,) and
¢,(w—w,), are required.

IV. EXPERIMENT

To test certain conclusions of the foregoing analysis, we
have carried out two sets of experiments. In the first set of
experiments, we demonstrate that the transmittance of a cav-
ity modulates as a function of laser detuning, as implied by
Eq. (15). In the second set of experiments we show that the
observed ring-down signals can be understood in terms of
cavity mode beating for all cavity lengths investigated, as
implied by Eq. (14).

The cavities were constructed from 2.54 c¢m diameter,
100 cm radius of curvature mirrors with maximum reflectiv-
ity, R~0.9998 near 810 nm. The mirrors were held in good
quality mirror mounts that were mounted on 2.54 cm diam-
eter stainless steel mounting posts bolted to an optical table.
The cavities were open to room air and no particular effort
was taken to stabilize the cavity length. The ring-down sig-
nals were measured with a low gain photomultiplier tube
terminated into 50 () and digitized with an 8 bit, 1
GSample/s digitizing oscilloscope. The rise time of this de-
tection system is estimated to be better than 1 ns.

In the first set of experiments, we report transmittance
measurements of a 13.39 cm open air cavity. For this cavity,
the longitudinal mode spacing is 1.12 GHz and adjacent
transverse modes are separated by one sixth the longitudinal
mode spacing (187 MHz). The cavity was injected with light
from a pulsed Nd3+:YAG-pumped dye cell amplifier chain
that was seeded by a single-mode, tunable continuous wave
diode laser. The resulting pulse had a nearly Gaussian time
profile with ~4.8 ns FWHM, and its single-shot spectrum
was determined to be ~100 MHz FWHM at a nominal
wavelength of 840 nm. The beam was shaped with a simple
Galilean telescope, and at the input mirror the beam profile
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FIG. 4. The measured transmitted energy at the exit of a ring down cavity,
&, as a function of laser frequency for a nonlength-stabilized degenerate
cavity (magic number equal to 6), excited with a single-mode pulsed laser
(~100 MHz FWHM). The data taken with an intracavity aperture present
exhibit a strong modulation in the cavity transmittance with laser frequency.
These data are indicated by O and @ for scanning of the laser frequency in
positive and negative directions, respectively. The data taken with an intra-
cavity aperture removed, indicated by A, exhibit no modulation with laser
frequency.

was approximately rectangular of nominal dimensions 1
mmX3 mm. No particular effort was made to mode match
into this cavity.

The excitation of high order transverse modes was sup-
pressed by placing a 1.5 mm intracavity aperture (approxi-
mately three times the TEM,, e waist diameter) at the
center of the cavity. The effective Fresnel number*® for this
cavity is ~20. At a given laser carrier frequency, the ring-
down signal was integrated over an ~20 us time window
(>5 e”! ring-down time constants) beginning near =0 for
each laser shot, and 500 or more shots were averaged to-
gether to give a measure of the transmitted energy. The sig-
nals were not normalized for variations in the laser energy.

Figure 4 displays the time-averaged (multishot) transmit-
ted energy with laser detuning for this cavity. Clearly evident
in this figure is a deep modulation, and the maxima are sepa-
rated by 1.12 GHz, which corresponds to the calculated free
spectral range of the cavity. The FWHM of the features is
~540 MHz. At the peak of the transmittance, the single shot
ring-down signals were exponential with a time constant of
~3.5 us, corresponding to intracavity losses of ~1.25X
10~ %/pass. The transmittance curve in F ig. 4 was recorded by
tuning the laser from low to high frequency and then from
high to low frequency. Tuning the laser in either direction
gave the same result.

The successful coupling into low order modes was con-
firmed by monitoring the intensity profile of the light emerg-
ing from the end of the cavity opposite injection with a CCD
camera. At a transmittance maximum, the intensity profile
was observed to be usually a TEMy,, sometimes a TEM,,,
and rarely some more complicated transverse mode. The
TEM,, or TEMy, profiles were fit with the Gauss—Hermite



wave functions and gave a best-fit Gaussian beam e ! diam-
eter of 0.522 mm. This value is within 3% of the calculated
diameter of 0.536 mm for this cavity. When the laser was
tuned off resonance, in contrast, most shots had no measur-
able intensity. Those that did usually displayed some high
order, more complicated transverse mode pattern with peak
intensities much less than the profiles observed on resonance.

The transmittance was measured again in a second ex-
periment with the same cavity without the intracavity aper-
ture. This data, also shown in Fig. 4, clearly lack the struc-
ture so readily apparent when the aperture was in place. The
slight slope in the transmittance is probably an artifact of the
uncompensated drift in the laser pulse energy. The intensity
profiles were highly structured, did not correspond to simple
cavity modes, and varied from shot-to-shot, indicating the
excitation of relatively high order transverse modes.

For excitation of a single transverse mode, Eq. (15) pre-
dicts that the linewidth of an isolated resonance is given by
the convolution of the laser power spectrum with the Fabry—
Perot transmission function. The cavity linewidth, inferred
from the measured ring-down time constant, is ~45 kHz and
is negligible in comparison to the single-shot laser band-
width of ~100 MHz. The predicted linewidth is therefore
much smaller than the measured value of 540 MHz for the
intracavity aperture case. The disparity between the mea-
sured linewidths and the model prediction can be attributed
to frequency jitter in the excitation laser, the effects of me-
chanical instabilities, and density fluctuations, as discussed
earlier. A change in cavity length of only 100 nm is suffi-
cient to shift the cavity transmittance peak by some 300
MHz. Similarly, a change in the pressure of 100 Pa (0.75
Torr) would shift the transmittance peak by approximately
100 MHz. Changes of these magnitudes are reasonable,
given the construction of this cavity. As given by Eq. (15),
for multimode excitation, the transmittance is a sum of the
transmittances associated with the individual transverse
modes. The superposition of six transmittance curves, sepa-
rated by 187 MHz, and each having a FWHM of 540 MHz,
would give a constant transmittance, consistent with the no-
aperture data presented in Fig. 4.

Scherer et al.® reported a set of experiments from which
they concluded that there is no frequency selectivity for
pulsed excitation of a “‘short’” ring-down cavity. This con-
clusion was drawn from two experimental results: the obser-
vation of a constant transmittance for ‘‘short’” unstabilized
cavities, and the observation of all anticipated features in
CRD absorption spectra. These results can be interpreted in
the context of our model. As discussed above, observation of
a constant transmittance does not imply that the cavity is not
frequency selective. Imperfect mode matching or misalign-
ment of the input beam could have excited multiple trans-
verse modes, and since Scherer e al.® used nondegenerate
cavities there was a virtual continuum'® of modes in which to
couple. These effects were doubtlessly exacerbated by the
use of unstabilized cavities and frequency jitter in their ex-
citation laser.

In the second set of experiments we test our interpreta-
tion of ring-down signals in terms of longitudinal and trans-
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FIG. 5. The ring-down signal measured for a magic number 6 cavity (iden-
tical to the cavity used to record the data in Fig. 4) which displays clear
evidence of transverse mode beating. In this case, the cavity was slightly
misaligned to destroy the orthogonality of the transverse modes. The decay
time constant, which is 3.5 us, corresponds to a nominal loss of 125%107¢
per pass and mode linewidth of 45 kHz. Note that in the main figure, due to
undersampling in the data display, aliasing effects give the false impression
of a low frequency beat signal. Inspection of the inset, however, reveals that
measured modulation, (@), is well described by a sinusoid (solid line) at the
transverse mode spacing of 187 MHz.

verse mode beating using ‘‘short,”’ ‘‘intermediate,”” and
“long”’ cavities. The observation of transverse mode beat-
ing, which can be observed by destroying the
orthogonality*"**? of the transverse modes, is considered to
be ‘‘a subtle but very significant confirmation of the (stable
resonator) theory.”” 3 For the ‘‘short,” magic number six
cavity, described above, all transverse modes would be ex-
pected to beat at multiples of the fundamental transverse
mode spacing, 187 MHz. By slightly misaligning the cavity
to promote off-axis injection of the laser beam and to destroy
the orthogonality of the transverse modes, ring-down signals
dominated by transverse mode beating were obtained. A
typical signal for this case, shown in Fig. 5, appears as an
exponential decay with a deep sinusoidal modulation. In the
inset of Fig. 5, a limited range of the data is fit very closely
by a sinusoid at the predicted fundamental frequency of 187
MHz. For this case, no other beat frequencies were observed.

Experiments were carried out to look at both longitudi-
nal and transverse mode beating in two ‘‘intermediate’
length magic number cavities. In these experiments, the light
source was a Littman-oscillator-based Ti:Al,O; laser
pumped by a Nd**:YAG laser. The single-shot laser output
from was a near-transform-limited pulse, having a FWHM of
~3.3 ns, giving an estimated bandwidth of ~135 MHz
FWHM near 760 nm. As with the cavity above, intracavity
apertures and a CCD camera were used to ensure on-axis
beam propagation and proper alignment of the cavity. We
examined a 29.3 cm cavity (where »=512 MHz and
v,/v,,=4), and a 100 cm cavity (in which »,=150 MHz and
v,/ v,,=2). Transverse mode beating was induced by placing
a small strip of paper in front of the photomultiplier. For
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FIG. 6. A portion of a measured (@) ring-down signal providing evidence
of longitudinal and transverse mode heating in a confocal cavity when the
detector was (a) unobscured and (b) partially blocked. The solid lines in
both figures represent best-fit sine waves with beat frequencies of 150 MHz
and 75 MHz. In (a), only beating at the longitudinal mode spacing, »,=150
MHz is evident, whereas in (b) frequencies at both the longitudinal and
transverse mode spacings of 150 MHz and 75 MHz, respectively, are ob-
served.

these cavities, we observed very strong mode beating at mul-
tiples of the transverse mode spacing equal to 128 MHz and
75 MHz, respectively. As shown in Fig. 6, without blocking
the detector, longitudinal mode beating at 150 MHz was ob-
served for the 100 cm cavity, and when the detector was
partially obscured, clear beats at 75 MHz arose. The solid
curve shown in Fig. 6(b), a least squares fit based on a linear
combination of 75 MHz and 150 MHz sinusoidal beats,
matches the measurements.

~ To look for evidence of modes in ‘‘long’’ ring-down
cavities, we looked for evidence of mode beating using a 180
cm cavity. For this nondegenerate cavity, v, and v, were
83.4 MHz and 66.1 MHz, respectively. Figure 7 shows two
ring-down signals measured using this cavity and the
Littman-oscillator-based Ti:Al,O; laser. With the detector
unobscured, a succession of damped pulses, separated by the
round-trip time of 12 ns was observed [Fig. 7(a)]. Superim-
posed on the data is a ring-down signal, calculated using Eq.
(21), where we have assumed a transform-limited pulse with
Avpwnn™= 135 MHz. Data obtained for this cavity with the
detector partially blocked [Fig. 7(b)] show clear evidence of
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FIG. 7. A portion of a measured ring-down signal (solid line) providing
evidence of longitudinal and transverse mode beating in ‘‘long’’ nondegen-
erate cavity when the detector was (a) unobscured and (b) partially blocked.
Here, the cavity length /=180 cm and the round-trip time 7,=12 ns and the
cavity was excited by a transform-limited pulse having an intensity FWHM
of 3.25 ns. In both figures, the measurements compare favorably to model
simulations (dashed lines), which are discussed in the text. In (a), the output
signal is well described by longitudinal mode beating simulation using Eq.
(24). In this case, the temporal envelopes of the pulses exiting the cavity are
very nearly Gaussian and are separated by ¢,.. In (b), partial obscuration of
the detector gives rise to a very complicated output signal. This output is
quasi-periodic with a frequency of ~17 MHz which corresponds to the
difference between the longitudinal and transverse mode spacings. In the
simulation of this signal, Eq. (23) was used and two transverse modes,
separated by A(m+n)=1, were assumed to dominate the response.

transverse mode beating effects. The detailed shape of the
ring-down signal depends on what portion of the beam was
blocked. Inspection of Fig. 7(b) reveals a complicated yet
nearly periodic waveform having a frequency of ~17 MHz,
a frequency that corresponds to the difference between the
longitudinal and transverse mode spacings. Also shown in
Fig. 7(b) is a calculated ring-down signal based on Eq. (14).
For this computation, beating between a pair of transverse
modes separated by A(m+n)=1 was assumed, and the
amount of coupling into each of these modes, as well as the
degree of nonorthogonality between the modes, were ad-
justed to give a good representation of the data. Given the
number of parameters in the model, nonidealities in the laser
and photomultiplier response and the complicated temporal
structure of the signal, agreement between the model and
experiment is quite good.



The observations of mode beating in the all cavities at
the predicted frequencies, coupled with observations of the
TEMg, and TEM,, eigenmodes for the ‘‘short’” magic num-
ber six cavity, demonstrate the existence of transverse and
longitudinal modes within empty ring-down cavities. These
measurements also demonstrate that even when the cavity is
“‘long”’ the observed signals are still interpretable in terms of
the cavity mode structure and stable resonator theory.

V. CONCLUSIONS

In this paper we have presented an analysis of the time
and frequency dependence of the signals observed with
empty cavities based on stable resonator theory. Many pre-
dictions of this analysis were experimentally verified. From
this analysis, we conclude that regardless of the cavity
length, ring-down cavities sustain well-defined modes and
are therefore inherently frequently selective. However, when
considering time-averaged data, mode effects may be obfus-
cated by the use of unstabilized cavities or poor mode match-
ing. Thus, as discussed by Zalicki and Zare,® spectral distor-
tion could result and caution may be necessary in
interpreting ring-down spectra.

Although we have focused on the response of ring-down
cavities under pulsed excitation, the analysis presented here
is by no means limited to this special case. The response of a
cavity to modulated continuous-wave laser beams can also
be analyzed with this formalism.** Similarly excitation by a
multimode laser can be incorporated into the present analysis
by superposing a set of pulses, with each pulse having a
unique phase, ¢’ and carrier frequency, wY’, to yield the
total excitation field, Eje,(")(t).

Depending on the application, there are several possible
approaches which may be taken in the design and implemen-
tation of a CRDS-based system. We identify at least three
generic applications having different optimal configurations.
First, for general-purpose spectroscopic measurements re-
quiring only moderate frequency resolution,** ¥ the use of
“long,”” nonstabilized and nondegenerate, large-aperture
cavities may be appropriate. With this approach, mode ef-
fects would be averaged out and all spectral features would
be observable as the probe laser is scanned. In this case,
quantitative CRDS absorption measurements are possible
when laser bandwidth effects are accounted for properly.
Second is the case of quantitative, high sensitivity absor-
bance measurements.”® Here one would wish to achieve the
shot noise limit, which may not be possible due to quasiran-
dom, shot-to-shot variations in transverse mode beats. In this
case, one should use nearly degenerate, ‘‘short’ cavities,
which should allow one to filter out transverse mode beating.
Since maximum sensitivity is achieved with long path
lengths, one must design the system so that the ‘‘short’’ cav-
ity criterion is satisfied. Third, as cleverly pointed out by
Lehmann and Romanini,'” one might design experiments to
fully exploit the very high frequency resolution inherent in
ring-down cavities.*’ In principle, one could obtain very high
resolution spectra with broadband laser sources if the cavities
are length stabilized. We would like to add that this approach

would also be realized best by building relatively short, de-
generate cavities. Such a configuration would result in the
excitation of a family of degenerate modes all about a single
frequency, thus relaxing the stringent demands on transverse
mode matching into the cavity which would be otherwise be
required.

In order that the potential of cavity ring-down spectros-
copy be fully exploited, it is undoubtedly important that the
practitioners of CRDS consider the underlying physical prin-
ciples. It is in this context that we have offered the foregoing
analysis. To those already experienced with the technique,
this exposition might clarify any ambiguities which may
have existed. To the new users of CRDS, we hope that this
work will complement the existing body of literature on the
subject and perhaps help to motivate future investigations.

Note added in proof. Subsequent to submission of this
manuscript, Zare and co-workers have reported experiments
and an analysis comparable to and in good agreement with
the findings reported here [J. Martin, B. A. Paldus, P. Zal-
icki, E. H. Wahl, T. G. Owano, J. S. Harris, Jr., C. H.
Kruger, and R. N. Zare, Chem. Phys. Lett. 258, 63 (1996); J.
Martin and R. N. Zare (private communication)].
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